Neural networks

Oct. 2009
Neural networks of brain and cognition

Martijn Meeter

Cognitieve 
Vrije Universiteit Amsterdam

Syllabus with

‘Neural models of cognitive processes’

Based on Meeter & Griffioen (2002). Klussen met Connectionisme, , UvA.

3I.
General remarks

Introduction
3
Computer files necessary for the assignments
3
Nutshell
3
Scripts
3
Turning in results, getting grades
4
Evaluation
4
II.
The Willshaw network
5
A. What is a Willshaw network?
5
B. Assignment 1: Willshaw
7
1.1 Partial pattern
7
1.2. XOR with Willshaw
7
1.3 Multilayer Willshaw
8
III.
Working with Nutshell
9
A. Working with the environment
9
Layout of the Nutshell environment
9
Looking at parameters
9
Connecting a layer, drawing patterns
10
Learning in the network, looking at weights
10
Updating activation, iterations
10
Clamping and deactivating
10
B. Scripting
11
C. Brief introduction to Visual Basic-script
11
IV.
The Hopfield network
16
A. Introduction
16
The Griffioen variant of Hopfield
17
B. Assignment 2: Hopfield
18
2.1 Interference
18
2.2 Graceful degradation
18
V.
Multi-layer Perceptron & Backpropagation
21
A. Introduction
21
B. Training a ‘backprop’ network
21
Step 1: thee data set
21
Step 2: learning
21
Step 3: testing
22
C. Assignment 3: backprop
22
3.1 Perceptron.
23
3.2. Backprop
24
Appendix 1: examples of Nutshell scripting commands
25
How does one refer to Nutshell?
25
Translating a command from the Nutshell environment to scripting
26
Setting values of node parameters such as activation or firing
28
Setting a weight
28
Setting the learning rate
28
Learning and updating activation
29
Resetting a layer
29
Clamping and deactivating
29
Seeing what happens
30
Appendix 2. Model neuron
31
References
33

General remarks

Introduction

The course Neural models of cognition consists of a series of lectures in which the theory is presented, and four practical assignments. The latter, one analytical and four computer assignments, are discussed in this syllabus. Their goal is to get your acquainted with different kinds of neural networks, and with modeling cognition and the brain.

The first assignment is individual: you are to work on it independently; collaborating is fraud. All other assignments can be done in pairs, although if you’d rather do it alone that is of course okay. You have two weeks to form the pairs (this has to be done before the first computer class – see schedule) but please do it as soon as possible. I will assume that everyone has a P.C., and would like to ask you to pair up with someone who has one if you don’t. You’ll have to be able to install the Nutshell program on the P.C., which can be problematic if you work on university computers (although the computers of FPP already have this program installed). It is also advisable to form the pairs in such way that at least one of you has programming experience. I have tried to minimize the amount of programming to be done, but some ‘scripting’ is unavoidable. ‘Scripting’ allows you to work with a program in an automated way (i.e., saving yourself mouse clicks), which is essential if you do simulations of any size.

I have tried to tailor the assignments to approx. 10 hours of work per assignment. Each has a deadline, which is given in the class schedule. The deadline is always at 18.00 on the day of the lecture to which the deadline is coupled.

To save time, it is best to communicate about the assignments via email. For questions, remarks or turning in your results, you can email m@meeter.nl. You can also find me in room 1E17 (Transitorium). If I have an announcement to make, I will do so as much as possible via the lectures, but also via email. Check your mail!

Computer files necessary for the assignments

Nutshell

In the assignments we use the program Nutshell (version 1.0.255), a general platform for simulating neural networks. Nutshell was developed at the UvA by Robert Berg, Jaap Murre and Eric Maryniak. It only works well under Windows (version ’98 or later).You can download Nutshell from: neuromod.uva.nl/nutshell (site of my old employer). Those without internet access can collect all files in room 1E17. The files first have to be unzipped; during the unzipping, an installation program will start. The default directory in which Nutshell is installed is “C:\Program Files\Nutshell”. You can change this during installation.

Scripts

In addition to Nutshell you’ll need a number of ‘scripts’ embedded in Excel-files. These can be found on Blackboard. While downloading it is better to save them on your hard disc than to open them and run the files from your browser. With the latter option you can get into problems when the scripts attempt to create new files to save results in.

I’ll assume you have Excel on your computer, and that Visual Basics is installed in Excel (this is default; you’ll learn more on what Visual Basics is at the computer class). If this is not the case, don’t hesitate to come and talk to me. If you do not have any programming experience, you might want to get yourself acquainted with Visual Basic as soon as possible. You can download easy-to-read information on it at: microsoft.com/officedev/articles/opg/toc/pgtoc.htm.

Turning in results, getting grades

For every assignment you’ll have to turn in results. Please put them in a file of a not too unusual word processor, and send that to me as an email attachment (m.meeter@psy.vu.nl, also for questions and remarks). You can also send Excel files with changed macros as attachment if the assignment requires this.
For each assignment you’ll get a grade between 1 and 10. In grading I pay attention to the correctness of the answer, the insight shown in the answer, and partly to the clarity of presentation of the results.

Each assignment comes with a deadline, given in the course schedule. Please don’t be perfectionist and turn in whatever you have at the deadline. Since deadlines seem to be there to be ignored, I have learned the value of being paternalistic: to enforce the deadlines each working day of delay means 1 point deducted from the assignment grade. If you wait two weeks (10 working days), you have a guaranteed 0. If you are too overwhelmed by your life to be on time, you can once ask for a personal, later deadline, but you must request this via email in advance, and with a good reason.
Evaluation

This is a young course, and it is essential that I get feedback on it. I’d like to know how you feel about it, how much work each assignment was, etc. Please try to remember all your opinions, as I’ll ask for it (anonymously, of course) during the evaluations at the end. I really need your feedback.
I. The Willshaw network

A. What is a Willshaw network?
A Willshaw network is a very simple algorithm with which the workings of a neural network can be illustrated. It is one of the few whose output can be calculated easily by hand. A Willshaw network consists of a number of input- and output nodes. Nodes can have activation 1 (active) or 0 (not active). Weights on the connections between nodes are also 1 (connection present) or 0 (connection absent). The input pattern is set out as a column, the output patter as a row. The matrix that is created in the middle (see fig. 1) is used to put the weights in: every cell (i,j) of the matrix contains the weight between the ith input node (in the column left of the matrix) and the jth output node (in the row above the matrix). To learn the combination of an input and output, the weight is set to 1 in every cell for which both the input and output node have activity 1. You can interpret this as that input and output nodes are connected (=weight 1) when they are both active in an input- and output combination. All other weights remain as they are; a weight of 1 thus never goes back to 0.

[image: image8.wmf]ï

ï

î

ï

ï

í

ì

>

£

-

=

å

å

¹

=

¹

=

n

i

j

j

ij

j

n

i

j

j

ij

j

i

w

a

if

w

a

if

a

1

1

0

1

0

1

Fig. 1: a Willshaw network that stores three input-output combinations. The three columns to the left are the input patterns, the three rows above the output patterns. The most leftward input is coupled to the top output, etc.. The yellow square contains the weights. On every spot in the square at which coupled input and output patterns both have a 1, the weight is set to 1. For example, on the top row of the square, the first input node has activity 1 in the second input pattern. Its companion output pattern (the middle row at the top) has a 1 at its third, fifth and sixth output node. The weight from input node 1 to output nodes 3, 5 and 6 is therefore set to 1. All other connections from the first input node remain with a weight of 0. For every 1 in the weights matrix you can find an input-output combination that has caused that weight to become 1.

Retrieving an output pattern goes as follows. First, its input pattern is presented (the first input pattern, see fig. 2). Then, compute for each output node how much input it receives from this input pattern. You do this by looking at all active input nodes. Whenever the weight between an active input node and the output node you are considering is 1, you add 1 to the input of that output node. The input of an output node x is thus equal to the number of active inputs with a connection to x. Then divide the input of the output node by the number of active input nodes. In fig. 2 there are three active input nodes, so the input of each output node must be divided by three. Each output node that now has an input of 1 (higher than 1 is impossible) counts as active (activity 1), each node with an input lower than 1 counts as inactive (0). The active output nodes now form the retrieved output pattern (lowest row in fig. 2). You can compare this pattern with the original, stored output pattern to see if retrieval is correct (this pattern is put between brackets above the weights in fig. 2). In fig. 2, retrieval is perfect.

[image: image9.wmf]j

i

ij

a

a

w

=

D

Fig. 2: retrieving the second pattern in t fig. 1 with help of the weights. See text for explanation.

[image: image10.wmf])

1

(

Fig. 3. Retrieving output patterns with only a partial input pattern. Of the input pattern in fig. 2, only two of the three nodes are now active. Even so, the whole output pattern is retrieved because instead of dividing inputs of individual output nodes by three, they are divided by 2 (as only 2 input nodes are active).

Although the Willshaw network is very simple, it exemplifies some characteristics of neural networks. For example, it can reconstruct the whole output pattern from a partial input pattern (so-called ‘pattern completion’; see fig. 3). It can also withstand small weight lesions (‘graceful degradation’, see Assignment 2).

B. Assignment 1: Willshaw

In contrast to all following ones (done in pairs) this is an individuation assignment. Each student should make it on his/her own. And don’t forget the deadline (see schedule).
1.1 Partial pattern

Construct a 5-input 4-output network by ‘learning’ it the combination of input pattern (1, 0, 1, 1, 0) and the output pattern (1, 0, 0, 1) [set out the input pattern vertically, the output pattern horizontally, put a 1 wherever both the input and the output node are active]. Present the pattern (1,0,0,0,0) to the network. What percentage of the output pattern becomes active?

1.2. XOR with Willshaw

XOR is computerspeak for a logical operation, the exclusive or. As you perhaps know, four operations are usually presented as the basis of logics: ‘not’, ‘and’, ‘or’ and ‘if…then’. The ‘or’ in that list is the inclusive or, equivalent to what we usually write as ‘and/or’: ‘A or B’ means ‘A, B, or both’. The exclusive or means ‘A or B, but not both’. This is closer to ‘or’ in normal usage: if you ask “Do you want coffee or tea?” you’d be rather disconcerted by an answer on “both”.

The XOR operation has played an important role in the history of connectionism, as discussed in the lectures. This is because of the claim by Minsky en Papert that neural networks cannot compute XOR. In other words, that it is impossible to set weights in a neural net so that an output node becomes active whenever input pattern A or input pattern B is presented, but not when A and B are active simultaneously. Minsky and Papert proved this for two-layer perceptrons, networks with just an input and an output layer. Later, it was shown that multilayer perceptrons are able to solve XOR. Here, we will test whether the Willshaw network can solve it.

- Construct two input patterns, A and B. These patterns must have one or more nodes that are active in both patterns (=places in the input column where both A and B have a 1), nodes active in neither pattern (=places where both A and B have a 0), and nodes that are active in A but not B, and vice versa. Define the disjunction pattern of A and B as the pattern that has a 1 on spots where A, or B, or both have a 1. Define the negation pattern of A and B as the patter that has a 0 where A and / or B has a 1, and a 1 where both A and B have 0’s. If you do it right, the disjunction and negation patterns are one another’s mirror images.

- Construct two output patterns C and D (you’re free here). C is the XOR-pattern: this pattern must come out when either A or B is presented as the input pattern, but not when either the disjunction pattern or the negation patter is the input.

a) Learn the Willshaw network the combination of A and C, and of B and C (=change the weight matrix). Show that the network produces the right pattern when given A (namely, pattern C).

b) Take the network of question 1.2a, and now learn it the combination of the disjunction pattern and output pattern D. What output does the network now produce to pattern A or pattern B?

c) What happens if you now store the combination of the negation pattern and D?

To describe in your report for this assignment: the patterns you used, answers to the questions, and the resulting weight matrices (as in the figures in the explanatory text).

1.3 Multilayer Willshaw

Willshaw-networks are by definition two-layer networks. To test how it behaves as a multilayer network, we’ll have to define ourselves how such a network would work. The simplest idea: paste two normal Willshaw networks on top of each other. The output of network 1 is then the input of network 2. A Willshaw network uses supervised learning. We therefore have to know, at learning, what the output patterns have to be in the first Willshaw network. Let learning therefore happen in two phases. In the first phase you train network 1. In the second phase, you use the output of network 1 as input to network 2, and then let that second network learn the combinations of input and output patterns.

Specifically, you have to do the following.

-Take the two input patterns A and B from 1.2, as well as the disjunction and negation patterns.

-Construct two output patterns, C and D, for layer 2. These can be very simple. As in 1.2, output C must become active whenever input patterns A or B is presented, and D when the disjunction or negation pattern is presented.

-Construct a set of middle layer patterns: patterns that are the output of network 1, but input of network 2.

-Think of a learning schedule for layer 1, a schedule that shows what is learned. You’ll have to decide which combinations of input pattern (A, B, the disjunction pattern and/or the negation pattern) and a middle layer pattern, is learned. Change the weights in layer 1.

-Present each of the four input patterns to network 1, compute its output, and give this as input to network 2. Put on the right output pattern in network 2 (=output pattern C if the input in layer 1 was A or B, output pattern D if the input was the disjunction or negation pattern). Change the weights in network 2.

-Test your work: present the input patterns sequentially to network 1, compute the output of network 1, give it as input to network 2, see if network 2 generates the right output pattern (C or D).

Try to solve XOR in this way.

* If you succeed, show this with an example, and try to reason in which cases it is possible and in which cases not.

* If you do not, show this with an example and try reason why it is impossible.

!!!!! DON”T FORGET THE DEADLINE !!!!!

II. Working with Nutshell

Most connectionists still write their own simulation programs, with their own algorithms, options, learning rules, output modules, pattern readers, etc. That is a rather inefficient state of affair, and in the last decade more and more standard simulation environments have appeared. These make it possible to do simulations without first spending months of programming, while in the ideal case giving advanced users lots of flexibility to change things around. Nutshell is one such environment. From the outside it’s a single, constant program, but it can be used to work with many kinds of neural network. As Nutshell was developed close-by
 (and is workable and free) we’ll use this program in the remaining assignments.

A. Working with the environment

To introduce you to Nutshell, we’ll first do a number of simple steps. We’ll use the Hopfield paradigm that is also central to the second assignment. Start up Nutshell by clicking on Nutshell in the Start menu (usually under Programs and then ‘Nutshell 1.0’). The Nutshell application starts up. You can now choose between different paradigms. A paradigm is in the neural networks literature one kind of network – a definition of how nodes are updated, how learning proceeds, what one can do with layers, etc. Hopfield is one such paradigm. Choose "Hopfield.np".

Layout of the Nutshell environment

You now see an empty workspace (a big empty window in which you can build a model), and different toolbars with lots of functions. Important is the ‘Edit’-toolbar (usually opened at the right in Nutshell), which can be recognized by the mouse pointer and the zooming loupe. Default the mouse pointer is selected. To the left is the "General" toolbar that lists all functions that are specific to the paradigm. If you have a small monitor you may not see the General toolbar. This is unproblematic; everything in this toolbar is also available under the "Paradigm” menu at the top. If you don’t see the General and Edit toolbars, look under the “View” menu whether they are marked (“Edit” is under “Toolbars”). You can find the rather limited help information of Nutshell under the Help menu at the top. The help menu contains a handy Hopfield tutorial. In the tutorial many functions are discussed in more detail than here, so if you are still puzzled by Nutshell after reading this you can go through the tutorial.

Down to the left is the console window, down to the right the output window. You can use the console window to enter single scripting commands (see section B), for example to test them, and the output window to look at variables and other information. We won’t be using either window in this course.

A Hopfield network consists of nodes that are organized in a layer. Make a layer by simply clicking "insert layer" in the General toolbar. You can specify the size of the layer; standard is 10 by 10 nodes. Click "OK". You now see a square of nodes (the layer) with randomly initialized activities.

Looking at parameters

You can look at the value of a node’s activation –and of other parameters- by selecting the node (click on it once with the left mouse button) and then pressing the right mouse button. A little menu should appear. Put the mouse on ‘Node(node number)’, and click on the now appearing field with as title ‘parameters’. Look at what the difference is between red and black nodes. You can change a node from red to black by changing the value of the parameter ‘Act’ and pressing "OK".

There are general parameters, and parameters that belong to nodes, layers, connections, or to 'tracts' (bundles of connections from 1 layer to itself or to other layers). In the General toolbar to the left there is an option 'Parameters'. Clicking on that option allows you to see the general parameters. Layer parameters can be viewed by selecting a layer or a node in it (left mouse click), clicking the right mouse button, and looking under the ‘Layer’ option. You won’t find much there: 'Hopfield' is a paradigm with few parameters (e.g., no 'tract'-parameter at all). Other paradigms have whole lists of parameters.

Connecting a layer, drawing patterns

The nodes in the Hopfield layer are not yet connected to one another. You change this by selecting the layer (left click in the top white part of the layer), and then clicking on the option "Insert Tract" in the General toolbar. A round arrow will appear at the top right of the layer. This is the ‘tract’ with connections from the layer to itself. The layer is now completely connected to itself.

You can set values of nodes by changing the function of the mouse pointer in the edit toolbar to ‘set value’. This function is the lowest one (half-filled square). Choose "custom value". Make the values in the appearing window equal to the two possible activation values in the Hopfield-paradigm: ‘set’ must be +1, ‘clear’ -1. Now you can set the activation of a node to the ‘set’ value (1) with a left click on the node, and to the ‘clear’ value (-1) with a right click. Do a left click on a red node and it will turn black.

You can give all nodes in the layer or in part of the layer the 'set' value by “drawing a square”. Put the mouse pointer outside the layer but near it, press the left mouse button and keep it pressed, and move the pointer over part of the layer. If you now release the mouse button, all nodes in that part will get the 'set'-activation value (i.e., they turn black). You give the 'clear' value to part or whole of the layer by doing the same, but now keeping the “shift” key pressed down while you ‘draw your square’.

If you’ve succeeded in getting the activation of nodes under control, draw a nice pattern in the layer.

Learning in the network, looking at weights

You can store the pattern through the ‘Learn’ command in the left toolbar. Press “Learn” once.

There are two ways to check whether the connections have indeed been changed. You can look at the connections. You do this by, under the “View” menu, clicking on the option ‘Connection’. You’ll now probably see gray squares with crosses in them. If you do, change the mouse function to the simple arrow in the “edit” menu on the right. Click on a node in the layer. You now see, in the coloring, the value of the weights on the connections to this node in all other nodes. Deeper investigation of one weight proceeds as follows. Click on one node. Press “shift”, and click on a second node. Both nodes are now selected. Click on your right mouse button. There is now an option "weight(node number, node number)". Clicking on it will give you the exact weight of the connection.

Updating activation, iterations

It is easy to show that the layer has learned a pattern in the simple case of one stored pattern. Go back to ‘node’ view (In View menu, click on node). Now reset the layer with random values (select the layer by clicking in the layer white; then click the "reset layer" option to the left). With the option “Act Step” you do one activity update. In the case of a Hopfield network, this means that a random node will reconsider its activation: it may change it or not. Click on "Act Step" until you see a node change its activation.

With the "Act Cycle" option you do a number of “Act Steps” after each other (default set to 100 in Hopfield). Click on "Act Cycle"; a number of nodes will change their activation. Click several times more on 'Act Cycle", and see the original pattern come back. If you would like to change the number of iterations performed by Act Cycle, you can do this by clicking "Parameters" in the "General"-toolbar. You’ll find the "Cycle Step" parameter that you can now change.

Clamping and deactivating

Sometimes it is necessary to make part of a network iterate, while a different part keeps its activation value (e.g., when the second part is some constant input and the network should adapt to that input). For this situation, Nutshell has the option to clamp nodes. A clamped node does not change its activation when you do “Act Cycle”.

You can clamp a node by ticking the ‘clamped’ parameter of the node (see “Looking at parameters), but it is easier to ‘draw a square’. To see this, first reset the layer (select layer, then “reset” option to the left). Click in the right “Edit” toolbar on the drawing of the white square with the black cross through it. The mouse pointer has now become a ‘clamper’. Press the left mouse button outside of the layer, and hold it while you move the mouse over part of the layer. When you release the button, some nodes with have black crosses through them: they are clamped. Now press ‘Act Cycle’. You’ll see that none of the clamped nodes changes its activation. By holding both the “Shift” key and the left mouse button while you move the mouse over the layer, you can declamp the nodes. Then click on the arrow in the “Edit” toolbar to get the normal mouse pointer back.

You can also deactivate (‘kill’) nodes. Click on the drawing of a grey square with a white cross through it in the Edit menu. Your mouse pointer has become a ‘deactivator’. Again ‘draw a square’ over the layer with the left mouse button held. The nodes in the square will turn gray with white crosses in them. These nodes have been deactivated: they don’t do anything (clamped nodes still send inputs to other nodes). You can de-deactivate nodes, you’ll have guessed, by keeping “shift” pressed while you ‘draw a square’.

With the functions in the General toolbar you can make lots of networks. As long as you are in a Hopfield workspace they will remain Hopfield networks, but you can make them as complex as you want, draw all the patterns you want, store them, and retrieve them as often as you want.

B. Scripting

For research it is often necessary to replicate your results to show that they were not flukes. To not always have to do all the work again, you can put everything you did in a script, a little computer program that contains a list of commands that Nutshell can understand and execute. Via the script you can also write away your results in for example an Excel sheet. Scripts are comparable to macros in word processors, or to the syntax-files that you’ve perhaps used in SPSS.

In the next section we discuss a standard script in Visual Basic. If you know little about programming you can use this to help you understand the scripts used in the assignments. If you still don’t understand anything, please examine the visual basic ‘help’ (to access the help use the help menu from the Visual Basic editor) and more specifically the ‘Visual Basic Conceptual Topics’; these topics cover all basic concepts of programming in VB. If you are still stuck, do not hesitate to ask for help.
C. Brief introduction to Visual Basic-script

Programming is about data and algorithms. An algorithm is a list of instructions -in this case visual basic instructions- for accomplishing some task. Data in programming typically takes the form of a single variable or of several variables in a structure together (a data structure). Commonly used data structures are arrays, a row of numbers. Imagine you would like to store ten numbers (your data). In Visual Basic (VB) you can do this as follows:

Dim maxSize as Integer
maxSize = 9 ‘ 10 – 1
Dim integerArray(maxSize) as Integer

The preceding three lines make use of several VB reserved words (more on this later). The reserved word Dim used in the first and last line of code stands for Dimension. This signals the VB interpreter (more on this later) that a data structure or variable is being defined (in techie language: declared). In the first line a variable ‘maxSize’ of type integer (the ‘as Integer’ part) is defined. Integers (from the Latin integer, which means untouched, whole) are the set of whole numbers and their negatives (i.e., 1, 2, -1, 573354; in math, the set Z). In the second line this variable maxSize is assigned the value 9. The part after the accent is a comment. Comments are pieces of text that will not be interpreted (used) by the VB interpreter; they are there so that the programmer can remind herself what she was doing when she programmed this. Finally, in the third line, the variable maxSize is used in the declaration of ‘integerArray’, an array of integers. MaxSize indicates the maximum position of the array. You indirectly define how many elements it must contain. It is important to remember two things here. First, the size and type of an array must be declared. Second, arrays always start with index 0 and run to the maximum position you gave them in the declaration. The size of the array is thus one bigger than its maximum position. So if you want ten elements in your array you give it maximum position nine (this is not so in most other programming languages).

You can then proceed to assign a value to a position in your array in the following way:
integerArray(0) = 2

In VB, and programming languages in general, the equals sign does not have the usual mathematical meaning of equality. Rather it is interpreted as an assignment: the variable to the left of the equals signs should receive the value typed to the right of the equal sign (note that the right-hand side of an assignment can also be another variable or data structure). In the previous line of code the first (index 0) of the ten (0 through 9) places in integerArray has received the value 2. In programming terms this is called assigning the value of 2 to the first element of the array. Now suppose you want to assign the value 2 to all other elements in the array. You could assign them by writing out each line:

integerArray(0) = 2

integerArray(1) = 2

 . . .

integerArray(9) = 2

This works fine for small arrays, but it is much easier to let the computer assign a value of 2 ten times in a row. This can be done with a “for…next”-loop. ‘For’ and ‘Next’ are again VB reserved works, and instruct the interpreter to perform a certain task, a loop in this case. In such a loop an action is repeated several times, possibly changing something each time around. Consider the next example:
For index = 0 to maxSize

integerArray(index) = 2
Next

All lines in between the “for” and the “next” (here just one) are performed several times; in this case one element of integerArray is assigned the value 2. The repetition is subtly different each time because each time that the loop runs a different element receives the value. This is done with the index. The index used in the ‘for’-loop is just another variable (we could have given in any name we would have liked, but it is common to use the name ‘index’ or i for short). This variable is used to monitor how often the loop has run. The variable ‘index’ starts out with the value zero and each time the loop ends it is increased with 1. As soon as index has a value greater than maxSize the loop stops.
So the first action that the “For…Next” loop takes is assigning the value 2 to the integerArray at position 0 (because variable ‘index’ starts out with value 0):

integerArray(0) = 2

The Next statement indicates that the loop should be done again: ‘index’ is still smaller than maxSize so ‘index’ is increased by one and gets value 1. Going into the loop again, the value 2 is assigned to the integerArray at position 1 (‘index’ = 1):

integerArray(1) = 2

This goes on till the index in the ‘For’ loop reaches ‘maxSize’. At this point the variable ‘index’ has the value 9. The code in the loop is executed one more time and then the program continues with the code after the ‘For’ loop. So the last thing the loop does is:

integerArray(9) = 2

Programming is instructing the computer – in a step by step manner – what it should do. Computers work with ones and zeros. To prevent having to tell the computer what to do using ones and zeroes (a very daunting and tedious task) higher-level programming languages like Visual Basic have been created. When writing a program in VB you are writing instructions for a compiler or interpreter. A compiler or interpreter translates the instructions you write into a binary instructions (a code consisting of zeroes and ones) that the computer hardware can perform. Just like natural languages, programming languages have syntax. In order for the compiler or interpreter to be able to translate your instructions you have to adhere to that syntax. Every programming language has its own syntax peculiarities, but often the basic constructs are the same. Typically a language has ways to declare data and data structures as well as indicating the operations that should be performed on the data.

In the preceding examples we have already seen some syntax rules for Visual Basic. For example when defining data structures the word Dim is used followed by the definition of your data. The word ‘Dim’ is a reserved word; this is a word that has a fixed meaning for the compiler or interpreter. Similarly ‘For’ and ‘Next’ are reserved words. A second convention you have already seen is that a variable name followed by parentheses must be the name of an array. You are free to choose the names of your arrays and variables with the exception that they are not reserved words. So ‘var()’ is an array, while ‘var’ would be the name of a variable, but ‘For()’ would be a syntax error.
In the preceding example you have seen how to define arrays with a single dimension (only one integer is supplied for the size of the array). In the scripts you will often see arrays with multiple dimensions. When programming for neural networks two dimensional arrays are often used. Consider the following example:

Dim maxRows as Integer
Dim maxCols as Integer
maxRows = 9 ‘ 10 – 1 rows
maxCols = 9 ‘ 10 – 1 rows
Dim matrix(maxRows, maxCols) as Integer ‘ A 10x10 matrix

It is often wise to use naming conventions so that variable and subroutine names (more on subroutines later) are different from each other and are understandable even for someone who has not written the code. Both variable names and subroutine names should be as descriptive as possible. A common convention is that subroutine names start with a capital letter and variable names with a small letter. If a variable or subroutine name consists of multiple words, each successive word starts with a capital letter. The subroutine and variable names (in bold) in the following example have been constructed using the conventions described above:

Sub CodingExample
Dim variableExample as Integer
Dim anotherVarExample as Integer
Dim oneDimensionalArray(10) as Integer
Dim biggerArray(10, 10) as Integer
End Sub

Besides the for…next loop we discussed earlier there are several Visual Basic language constructs for writing algorithms. By using the visual basic ‘help’ you can examine all sorts of syntax for data structures and algorithms. You can access the ‘help’ by selecting a reserved word with you cursor and then pressing F1. Alternatively you can use the help menu entry to start the help and then search the reserved words and language constructions. As already mentioned, the ‘Visual Basic Conceptual Topics’ are of particular interest. They cover all basic concepts ofing in VB.
In addition to following a strict syntax, most scripts are highly structured. A task is commonly divided between one main algorithm or main procedure and several sub algorithms. The program starts by executing the first line of the main procedure and from there on line after line of code is executed. Subroutines (sub algorithms) often solve a small, well defined part of the larger problem the main algorithm is trying to solve. Subroutines are defined elsewhere in you program and only the ‘call’ to the subroutine is placed in the main procedure there where it is needed. The ‘call’ to the subroutine consists of the name of the subroutine, often, but not always, followed by several parameters. Parameters to a subroutine are variables or data structures that have been defined in the main procedure and are used in the subroutine. In order to use parameters in your subroutine the first line of the subroutine defines, after the name of the subroutine, the types of variables it can receive as parameters. The basic structure of a program is then as follows (reserved words are in italics and the names of the main procedure and subroutines are in bold):

Sub MainProcedure
Dim dataStructure1

Dim dataStructure2

Subroutine1 dataStructure1, dataStructure2
‘ Call of Subroutine1
End Sub
Sub Subroutine1(Dim dataStructure1, Dim dataStructure2)

Do something with dataStructure1 and dataStructure2
End Sub
A subroutine can perform all sorts of functions. You can make use of every language construct. For example a for…next loop can be used, but it is also possible to ‘call’ yet another subroutine. In a visual basic script there are three more language constructions you can encounter: script calls, global constants and comments.
Script calls are function (or subroutine) calls from a scripting language to another program such as Word or Excel, but also Nutshell. The routines that are called can be written in a different language and may contain their own variables and data structures. In this course the Nutshell-simulator is called from within visual basic scripts. Nutshell itself is written in C++ and contains some tens of thousands of lines of code. By working from within visual basic you ignore that complexity and merely call the functions you need.

Global constants are variables with a constant value that can be used anywhere in your program. For example if you want to learn 3 patterns it could be smarter to use a global constant ‘nrOfPatterns’ equal to 3, rather than keep using the value 3 throughout your program. If you would later want to learn 4 patterns, you can more easily change the one global constant than go through the whole code to find where you used the number of patterns.

Comments are places after an accent: ` (` this is then some comment), and are often used to describe what a particular algorithm is doing or what a data structure represents. Schematically a complete script could look like this:
‘Global constants
Const globalConstant1 = value
Const globalConstant2 = value
Sub MainProcedure

Scriptcommand1

Scriptcommand2

Dim dataStructure1 ‘ Comment on what the data represents

Dim dataStructure2 ‘ Comment on what the data represents

Subroutine1 dataStructure1, dataStructure2

Dim dataStructure3

Subroutine2 dataStructure2, dataStructure3
End Sub

Sub Subroutine1 (Dim dataStructure1, Dim dataStructure2)

Perform some operation on dataStructure1 and dataStructure2

End Sub

Sub Subroutine2(Dim dataStructure2, Dim dataStructure3)

 Perform some operation on dataStructure2 and dataStructure3

Subroutine3 dataStructure3
End Sub

Sub Subroutine3(Dim dataStructure3)

Perform some operation on dataStructure3

End Sub
This is roughly the structure of the scripts used in the assignments. How such a script communicates with Nutshell is explained in Appendix 1. In that appendix several commands to perform actions in Nutshell are explained. This explanation does, however, assume a basic understanding of Visual Basic.

III. The Hopfield network

A. Introduction

The Hopfield network of John Hopfield (1982) was inspired by the so-called Spin Glass Model from particle physics. This model describes how elementary particles switch from a situation in which they all have a 'spin' (a quantum mechanic property) in a different direction to one in which their spin is on in the same direction. In a nutshell, every two particles that spin around different axes exert a force on one another. This force is not enough for the one particle to impose its spin direction on the other, but when a particle switches its spin direction at random moments, as they regularly do, they are more likely to switch to the spin direction of neighboring particles. By and by more and more particles will have the same spin direction, and will exert a stronger and stronger force on the remaining particles that spin in other directions, until all particles spin in the same direction. Such a process, Hopfield thought, may also take place in neural networks, with neurons “imposing” their state on their neighbors.
The most relevant property that Hopfield took from the Spin Glass Model is its energy function. With this function, one can describe on a macro level the behavior of individual nodes in a network, or, in the case of the Spin Glass Model, of particles and their spin. The energy function gives the total energy in a network for all possible combination of states of the nodes in that network. In the Spin Glass Model ernergy is low when all particles have the same spin. In a Hopfield network, energy is low when nodes are all in a “coherent” state. When they are in “incoherent” states energy is high. All possible combinations of node states form an “energy landscape”: if you would plot the energy of the network as a function of the states in some high-dimensional figure, you would get a landscape with peaks of high energy (all nodes in incoherent states) and low valleys (coherent states).

In the Hopfield net, nodes change their state only if it lowers the energy of the network. In the metaphor of the energy landscape: a node changes its state from x to y if the network with the node in x is at a higher point in the landscape that with the node in y. Because energy can only decrease with every change, the network “rolls” further and further down though the energy landscape as a marble (see fig. 1). Until it cannot get lower anymore because it has entered a trough from which all changes would only produce a higher energy. These troughs, the minima of the energy landscape in which the states of the nodes are stable, are called attractors. The Hopfield network is thus called an attractor network, a network that finds its attractors. In the case of a point attractor no node changes its state anymore once the attractor is reached, in the ase of a limit cycle they do change states but always flip back to the attractor state on the next change.

[image: image11.wmf])

1

2

(

-

=

D

j

i

ij

a

a

w

Fig. 1: energy landscape with the network rolling as a marble through it until it finds a minimum
[image: image12.wmf]Example of a simple

heteroassociative

memory of the

Willshaw

 type

1 1 0 1 0 0

0

0

0

1

1

1

1 1

 1

1 1

 1

1 1 1

1

0

1

0

1

0

0

0

1

0

1

1

0 0 1 0 1 1

1 0 0 1 1 0

 1

 1 1

 1 1 1

 1 1 1

1 1 1

1 1 1

1 1 1

Nodes in the classical Hopfield paradigm can only have a state of 1, or of -1. Between all nodes there are connections that can have a positive or negative weight. A positive weight can be interpreted as that sender and receiver “want” to be in the same state, a negative weight as that they “want” to be in opposite states, as will be clear in a moment. The input that a node j sends to a node i is equal to the product:
aj wij
where aj is the state of the sending node j and wij the weight on the connection from j to i (wji, the weight from i to j, is always the same as wij; that is, the connections are always symmetrical). A positive input is a signal for the receiver of the input, node i, to remain in or switch to state 1. This occurs if sending node j has state 1 and the weight is positive, or if node j is in state -1 and the weight is negative. In both remaining cases (node j in state -1 and a positive weight, or node j in state 1 and a negative weight), the input is negative, and this will pull node i towards state -1. One sees that when the weight is positive, node j pulls node i towards its own state. When the weight is negative, it pulls node i towards the opposite state.
The network changes the state of one random node per time step – referred to as an iteration. This is an example of asynchronous updating, in which nodes update their state on different iterations. In most other paradigms one uses synchrone updating, in which all nodes update their activity at the same time.
Updating a node state is done, in the classical Hopfield paradigm, with the following activation rule:

[image: image13.wmf]Example of pattern retrieval

1 1

 1

1 1

 1

1 1 1

0

0

1

0

1

1

 1

 1 1

 1 1 1

 1 1 1

1 1 1

1 1 1

1 1 1

3 2 2 3 3 2

1 0 0 1 1 0

Sum = 3

Div by 3 =

(1 0 0 1 1 0)

The state ai of node i (the receiver) is determined by its input from all other nodes in the network (the sum in the equation is the sum over all nodes). The input from each node j is calculated, as above, by multiplying its state by the weight from j to i. If the summed input is larger than 0 (and, thus, if the weighted majority of nodes ‘want’ node i in state 1), the state of node i goes to 1 or remains 1. If the summed input is smaller or equal to 0, the state becomes or remains -1.

Attractors do not appear out of thin air in a network (think back at what you did in the "Working with Nutshell" chapter). They are created by storing in the network one or more patterns; the patterns, or sometimes combinations of stored patterns, become the attractors. A pattern in a Hopfield network is stored by auto association. One speaks of hetero association if two patterns are associated in a network, and of auto association if a pattern is associated with itself. In a one-layered network such as the Hopfield network, there can only be one pattern active at a time, and all learning must therefore be auto association.

To store a pattern, all nodes in the network must first be set in the state that is prescribed by the pattern (e.g., a pattern can consist of that all nodes are in state 1). Connections between the nodes are then changed according to the following learning rule:

[image: image14.wmf]Example of successful pattern

completion using a

subpattern

1 1

 1

1 1

 1

1 1 1

0

0

1

0

0

1

 1

 1 1

 1 1 1

 1 1 1

1 1 1

1 1 1

1 1 1

2 1 1 2 2 1

1 0 0 1 1 0

Sum = 2

Div by 2 =

(1 0 0 1 1 0)

1

This rule means that if two nodes i and j are in the same state (i.e., both in 1 or both in -1), the weight wij increases with 1 (the same holds by necessity for the weight the other way, wji). If the nodes are in opposite states, the weight decreases with 1.

The Griffioen variant of Hopfield

Nutshell also contains a variant of the classic Hopfield network. In this variant activation is not equal to 1 or –1, but to 1 or 0. The learning rule in this variant is:

[image: image15.wmf]

toestand

energie

If the receiving node (the postsynaptic one) is active (i.e., activity= 1), then this learning rule is equivalent to the standard one (equation 2): the weight is increased when the sender (the presynaptic node) is also active, and decreased when it is not. When the postsynaptic node is not active (activity=0), then weight change is always equal to 0. Assignment 2.2 uses this 1-or-0, or Griffioen, variant.

B. Assignment 2: Hopfield

For assignment 2.1 you need only the Nutshell environment. The text assumes you’ve read the previous chapter and are thus familiar with Nutshell. In assignment 2.2 you learn how to work with scripts.

2.1 Interference

a) Attractor networks suffer from so-called spurious states, stable patterns that have never been stored themselves. Open a Hopfield-workspace, and create a network of one layer connected with itself (see previous chapter). Learn the network a pattern by drawing it on the layer and clicking once (not more) on “Learn”. What is the most important spurious state in a Hopfield network that has stored just one pattern?

Hint: ‘reset’ the layer a few times with a random pattern, and look what pattern the network converges to if you let it ‘cycle’. If you do not see it immediate, do everything again with a pattern of different size (=the nr. of nodes with activity 1 in the pattern).

b) If you store too many patterns in a network, they start interfering with one another. The number of patterns that a network can store is dependent on its number of nodes. Create a layer of 5 by 5 nodes. Try to find out how many patterns you can store in this network before interference becomes very large (i.e., before patterns are lost when new ones are stored). Make the patterns yourself by drawing them on the layer (letters? animals?) and clicking once on “Learn”. Test all patterns after each new act of storage by activating approx. 90% of the nodes in the pattern, and clicking ‘cycle’ a few times. A pattern is still in the network if the last 10% of the pattern reappears. The pattern has disappeared if this does not happen. How many patterns did you store before the first pattern disappears? Draw (or ‘screendump’) this pattern in our report. Is there anything special about this pattern as compared to the others?

2.2 Graceful degradation

[image: image16.emf]

Figuur 1

[read “The Griffioen variant” section above before this] Here, you will work with a script that tests so-called graceful degradation. Neural networks are surprisingly resistant against damage; also after serious lesions to their weights, they still retrieve to a large extent stored patterns. In the script with which you’ll work, three patterns are stored in a standard network (see Figure 1). Then we’ll make lesions to the matrix with weights, and check whether the patterns can still be retrieved. The script has been hacked in two. In the first sub-assignment we’ll work with the basic script, and only then with the full one.

Open the file hopfieldopdr.xls (can be found on BB). Before it opens, you should get a choice of whether macros are read or not. Click on “Enable Macros” or its Dutch translation (if you do not get the choice you probably have to change the security level of Excel in some options menu from “High” to “Medium”; do this, close Excel, and start anew). Now start the Visual Basic (VB) editor to have a look at the code. You can do this with the option f “Visual Basic Editor”, under the “Macro” submenu in the “Tools” menu. A faster option is to press “Alt” and “F11“ at the same time. The file has two modules, sheets with scripts. Make sure that you are in the “vraag2a”-module (e.g., check under the "Window" menu).

a) Look at the script, try to go through it from start to end. Now change the script in such way that five patterns are stored instead of three. The two extra ones should be similar to the three already stored. Caution: you have to create the patterns in a procedure, but you must separately make sure that they are learned (Hint: look at Global parameters).

You can run the program to see what it does by pressing the blue “play” button in the VB editor, on the second toolbar.

b) Now open the vraag2bcd module in the same file. This is a script that is similar to the one of vraag2a, but with as additions an extra global parameter, code that destroys weights, and code that tests the model. Make in this module the changes you made in vraag 2a.

b1) Change the program so that lesions are made after the learning phase. Make sure that the proportion of weights lesioned increases to the maximum in small increments, e.g. of 5% (maximum: one can of course not lesion more connections than exist). To do this you’ll have to change two global constants. List these.
b2) To see what the effect is of the lesions, there is a testing routine, which has been added as a procedure in the module " vraag2bcd". It uses as measure of retrieval the Hamming distance. Deduce from the code that calculates it what this Hamming distance is. What is the maximum value it can attain?

c) To save the results there is another procedure, WriteHammingdistance. If you run the script, it will write the results to an Excel sheet in a new file. Run the script at least twice, so that you have two or more sets of results. Compare them and give your opinion: is there a lot of variance in the results? At how many lesions do patterns start disappearing? How does the decay go? (Real clever would be to fit different functions to the decay to find the best description – this is possible by making an excel graph, right clicking on the decay line, and choosing “add trendline”).

d) We’re not challenging the network much by storing just a few nonoverlapping patterns. It becomes more difficult if we also make the network store some random noise patterns in between. There is a procedure to do just that (LearnRandomPatterns); it stores a number of noise patterns equal to the nrOfRnd constant (see top module). Put this constant to several values – e.g., 1, 4, 7, 10, etc., and check what happens to the retrieval of the nonrandom patterns before you do any lesions, and also what happens to the resistance of the patterns to lesions (in particular to the size at which lesions start having an impact). Try to explain your results.

e) If you do assignment 2c with the classic Hopfield paradigm it immediately goes wrong (try it by making the constant ‘isItClassicalHopf’ “=true” at the top of the script of vraag2bcd). Ded uce why this is the case (hint: it has to do with what happens when nodes both fall outside of the pattern).

Turn in via email the file “HopfieldOpdr.xls” with your changes, the results, and your answers to the questions.

!!!!! DON’T FORGET THE DEADLINE !!!!!

IV. Multi-layer Perceptron & Backpropagation

A. Introduction
Perceptrons are networks with two layers -an input and output layer- that are capable of learning just about any mapping of inputs to outputs. ‘Just about’, because perceptrons are actually only capable of learning so-called linearly separable problems, as shown by Minsky en Papert in their 1969 book (the most well-known mapping that is not linearly separable is the so-called XOR problem).

The multilayer perceptron or MLP was one answer to the Minsky and Papert arguments. The MLP can learn, in combination with a nonlinear activiation rule and the powerful error backpropagation learning algorithm, all of the problematic mappings listed by them. ‘Backprop’-networks, as MLPs with backpropagation are usually called, became extremely popular immediately after being introduced. They were able to learn the most diverse tasks, such as finding the correct pronounciation given the spelling of a work, producing past tenses of verbs, recognizing sea mines under water, or dealing with luggage at airports. In the last decade or so that popularity has diminished again: for each task there are usually powerful statististical methods that are as good but more efficient than backprop networks. Moreover, such methods are usually easier to dissect than backprop networks, which are often used as a black box: in goes input, out comes output, but why the model does what it does is unclear for the user. As model for brain function the popularity of backprop networks has waned as well. Backpropagation of errors just does not seem to occur in the brain, and more and more connectionists find this problematic enough to abandon backprop for models of the brain or of cognition.

This assignment introduces backprop, and shows how you can use it to learn from a data set.

B. Training a ‘backprop’ network

Step 1: thee data set

A data set for a neural network must contain a number of input variables, and one or more output variables that must be reproduced or predicted. The variables can be everything: clients per cash machine, shoe sizes of criminals, phoneme-to-letter conversions. In all cases the information must be changed to a format that the network can process. Usually, this entrails scaling data, cleaning it up, and other forms of preprocessing that can be a tremendous job in real applications such as earthquake forecasting. For this assignment four data sets were prepared. In one, you can for example use demographic variables (e.g., age, training) to predict salary. The demographics form the input pattern, salary the output pattern, and the combination of both is given to the network.

Step 2: learning

Training a backprop network means presenting input- output combination from the data set- very often – thousands of times. Meanwhile the network changes the weights, until it can predict the output from the input. The backpropagation-algorithm consists of two parts (also see Gurney, chapter 4):

1. A forward calculation in which node activities in each layer are calculated from those of the previous layer (in Nutshell-backprop this is called the ‘Upsweep’).

2. A backwards calculation in which the difference between the real output and the target output (the error) is calculated in the top layer, and then fed back to the previous layers (in Nutshell called ‘Downsweep’). Subsequently the weights in the whole network are changed with the delta learning rule using the error values. This reduces errors on the next iteration.

By alternating up- and downsweeps, the network learns to predict the target output from the inputs. Statistically this is equivalent to nonlinear regression (perceptrons do linear regression). Learning usually proceeds slowly in Backprop, with very small steps. This is because the network becomes unstable if too big steps are taken: instead of converging to the right values, the weights wildly oscillate and the network never learns to predict the output. The speed of learning is determined by the parameter eta (often either  or (is used as symbol for the learning rate).

Step 3: testing

In the test phase input patterns are presented, and one looks at whether the output generated by the network is indeed similar to the target output. Often one presents not only the input-output combinations used in the training, but also others that were kept back for verification: with these patterns you test whether the network can generalize what it has learning.

C. Assignment 3: backprop

In assignments 3.1 and 3.2 a network has to be trained on a data set. To make sure that not everyone is doing the same thing, I collected 4 data sets – all with real data.

Download and open the file “opdr3 datasets.xls” (see BB); each worksheet in this file contains a different data set. Data set 1 contains data from a sample of older adults at risk for dementia; of each older adult memory test scores are given, as well as demographic variables and the scores on a dementia test and a depression questionnaire. Data set 2 gives demographic data of a sample of workers (gender, age, training, kind of function…) and their salary. For the hardcore determinist: data set 3 gives IQ and brain size for 12 twins =24 people. Data set 4 gives votes for national parties at elections in 1998 for a number of Dutch cities. The first set was donated by Paulien Spaan (UvA), the second and third came from the site www.stat.cmu.edu/data sets/, the last is an adaptation of CBS data.

Choose a data set.
 Determine which variables in this set you’ll use as input variables, and which as output variables. Select at least 4 input variables and 2 outputs. In data set 4 you could for example try to predict the votes of big parties (PvdA, VVD, CDA) from those of the small ones. Both input and output variables must be numbers; e.g. you cannot choose city name in data set 4 as a variable. Denote, on row 3 of the data sheet, your inputs and outputs by putting a small “i” above each input variable and a small “o” above each output variable (the letter oooo, not the number 0).

Download and open the file “Backpropscripts.xls”. Open the Visual Basic code (Alt+F11). There are three modules (code windows). The code for reading in the data and writing away results has been put in a separate module for clarity. Open this module and try to understand what the code will do.

Go back to Excel, open “opdr3 data sets.xls”, and make sure that the data set that you want to use is ‘active’ (i.e., it is the one that is visible). If you don’t you’ll get an error message at:

ReDim learnPats(nrLearnPats - 1, nrInputs + nrOutputs - 1)

After making your data sheet active, press “Alt” and “F8” simultaneously; this opens a list of scripts you can run. Select “datavoorbereiden” and click‘run’. This script will put in the top row the number of variables in the file (cell D1), the number of patterns (=‘cases’; cell E1), and how many input and output variables you selected (cells F1 and G1). A scaling factor for each variable will appear in the fourth row. This factor is equal to the largest value on the variable, and all values are divided by it so that no value is bigger than 1. In this way the network does not have to rescale weights first to adapt them to the size of the input, speeding up learning.

The data set is now ready for use. In both 3.1 and 3.2 the data set will be loaded, then divided into a training set consisting of ¾ of all ‘cases’ (the ‘training patterns’) and a test set of ¼ of cases with which generalization is tested (‘test patterns’). The training set will be learned using parameters specified by you, and then the network will be tested.

3.1 Perceptron.

Open the module “Perceptron” in the file “Backpropscripts.xls”. This module contains the framework of a simulation in which a two-layer network learns your data set. It is a two-layer backprop-network and not a real perceptron you work with in this assignment (what’s the difference?), but that does not matter greatly. Most work has been done: procedures have been written to read in data, do the learning, and test the network. What misses is the network itself.

a) Write some lines of software at the location given by comments in the script. These lines should create a network with two layers. The first layer (the input layer with number ‘0’) must have a number of nodes equal to the number of input variables that you have marked in your data set. The second layer (the output layer with number ‘1’) must have as many nodes as you have marked as output variables. Make a ‘tract’ of connections from layer 0 to layer 1. Look at appendix 1 and the files of assignment 2 to see how to do this.

b) Set the two most important training variables: the number of training episodes (LearnEpochs), and the learning rate. Begin with a small value for the learning rate and a large number of episodes. There is a third global constant, the number of tests done in the simulation – make this constant equal to 4. The simulation spaces its tests over all training episodes; if you have 200 episodes and 4 tests it will do a test every 200 / 4 = 50 episodes (it will automatically do a fifth test at the beginning of the simulation, before any learning, to give you a baseline). This way, you can see progress in learning, and you don’t have to rerun the simulation for each number of training episodes (i.e., 200 episodes also tell you what 50 does). Results from each test are written in a new sheet in an Excel workbook. Make sure that the number of episodes can be divided by the number of tests (e.g., that is divisible by 4 if you stick to 4 tests).

Run the script “Perceptron”. This will only work if you the “opdr3 data sets.xls” file is open, and your data set is the active worksheet. If everything works fine a new Excel workbook is made with in it the results of the simulation. Inspect what the model has done. Is there progress from one test to the next? Do test patterns (see above) progress as much as training patterns?

c) Vary the learning rate and the number of learning trials until you can answer the following:

· Which combination is optimal?

· What influence does the learning rate have?

· What influence does the number of training episodes have?

What procedure did you follow to find this all out?

d) If your network has reached a state in which output can be predicted well, look at the weights between input and output nodes. Answer for every output variable the question: which input variable predicts the output variable best? (Nodes in the input layer have the same order as input variables in your data file).

If your network never reaches such a state and keeps on predicting output badly, do not answer the above question but reason why predictions remain so bad.

e) Some output patterns remain badly predicted even as the others don’t. Try to explain this.

3.2. Backprop

In this assignment you let loose a three-layer network on your data. Use exactly the same data and the same input- output mapping. Open the module “Backprop”

a) Make, as you did in 3.1 for two layers, a three layer network. Make sure that the same variables refer to the input and output layers as in assignment 3.1. Create a variable “hiddenlayer” that refers to the hidden layer. You will have to vary the number of nodes in the “hidden layer”. Create the right connections (“Tracts”). You can copy those from 3.1, but now you need tracts from the input to the hidden layer, and from the hidden to the output layer (pay attention: the receiving layer comes first in the command). Check whether the right network is created with help of a breakpoint.

A breakpoint stops execution of a script so that you can look at what has happened up to the point where you put the breakpoint. You create one by putting the cursor on the line where you want to stop the script, and then clicking “Toggle breakpoint” under the “Debug” menu (here you can put the breakpoint immediately after your model-building code). You cannot put a breakpoint on an empty line, one with only comments, or one starting with “Dim” or “ReDim”. Put the breakpoint on the first following line with code, and run the script in the normal way. It will now be interrupted at the breakpoint. You can click on Nutshell and look at the network. To resume execution of the script you go back to “Visual Basic” and click on “run”. To stop and write some more code, click the “stop” button (blue square), or choose ‘reset’ under the “run”-menu. Breakpoints are handy to check whether your script does what it was supposed to do.

b) You now have three variables to optimize learning with: the learning rate, the number of training episodes, and the number of “hidden units” – the nodes in the hidden layer. Put the learning rate low, the number of episodes high, and compare at least these cases: 1 “hidden unit”, as many “hidden units” as there are output nodes, and 100 “hidden units”. What is the effect of the number of “hidden units”?

c) Find an optimal combination of the three variables. Can the network predict well? Is the three-layer network better, faster or more efficient than the two-layer network? Compare the two, pick your favorite and defend your choice

!!!!! DON’T FORGET THE DEADLINE !!!!!

Appendix 1: examples of Nutshell scripting commands

This appendix contains examples of script commands that you need to write code for the assignments. Many of these commands can be used in every paradigm, though others are specific to one paradigm. To see what commands you can use with a paradigm, open a workspace of that paradigm in the Nutshell environment. Only those you see under the ‘Paradigm’ menu you can use in scripting for that paradigm.

How does one refer to Nutshell?

In Nutshell all action happens in a workspace, in which layers with nodes and tracts with connections are placed. To control Nutshell from another program with scripting, you have to be able to reach the workspace and other elements. You must be able to ‘speak’ to those 'objects', as it is called in software speak. This is all possible by going down a complex hierarchy until you are at the object that you want to reach. Easiest is having a variable that refers to the object (a variable is a name that refers to something else, perhaps a number, or a piece of text, or, like here, an ‘object’). In all scripts for Nutshell, we use variables that refer to Nutshell and to a workspace. To create these variables each script contains lines similar to the following:

Dim workspcs As Object, worksp As Object

Set workspcs = CreateObject("Nutshell.Workspaces")

Set worksp = workspcs.Add("Hopfield.np")

In the first line, two variables are created with the Dim statement. In the second line, a "Workspaces" object is created and the first variable, workspcs is made to refer to that object. Such a “Workspaces” object is a set of workspaces -in fact a newly opened Nutshell program. In the third line, a new workspace is created in this set of workspaces. The line specifies that it should be of the Hopfield kind by listing the name of the Hopfield paradigm file (a paradigm file, extension“.np”, defines a Nutshell paradigm; Hopfield.np can be replaced by the name of any paradigm file, as you see them when you create a new workspace in Nutshell). The second variable, worksp, is made to refer to the newly opened workspace. This variable allows you to refer to objects in Nutshell: when you write worksp below those lines in the script, VBA knows that you are referring to the new Macgregor workspace open in Nutshell, and that you are going to give an order to do something with that workspace.

In the final exercise, the workspace objects are created in the subroutine initNutshell in the ModelModule. The global variable nutshellWorkspace can be used to access the workspace from within the ModelModule other modules can access it by calling the publicly accessible function getNutshellWorkspace(). All the examples given in this appendix can also be used in the final exercise, instead of the variable worksp use the variable nutshellWorkspace . If such a variable has not been defined use the following lines:

Dim nutshellWorkspace As Object

Set nutshellWorkspace = getNutshellWorkspace

If you put a layer in the workspace, it will be the first layer of the workspace. This layer gets the number 0 because VBA, like most programming languages starts counting at 0. All objects within a workspace ‘belong’ to it. You can refer to the layer by going to the workspace, then down to its collection of layers, and then specify that it has to be the one with number 0. Since VBA denotes ‘belonging’ with a dot, you get the following piece of code:

worksp.layers(0)

This refers to the zeroth layer in the workspace. If you now want to point to the third node in the layer, you just go down a little more:
worksp.layers(0).nodes(3)

This makes VBA understand with which node you want to do something. Nodes is here the collection of all nodes in the layer, and the dot shows that this collection ‘belongs’ to the layer. Dots allow Nutshell to go through the hierarchy of objects. Because getting to a tiny object can lead to long formulas with lots of dots, we often create variables that refer to a layer:

Dim layer as object

Set layer = worksp.layers(0)

This makes the variable layer refer to layer 0. You can now refer to its third node with:

layer.nodes(3)
In the scripts for the final exercise a convenience method has been introduced to retrieve the layerobject:
Dim layer as object

Set layer = getNutshellLayerObject(0)
Translating a command from the Nutshell environment to scripting

The principle behind scripting commands is simple: you write down what you do in Nutshell. If, for example, you want to ‘reset’ a layer in Nutshell, you select it and then click the function ‘reset layer’ in the 'General' toolbar. The 'General' toolbar belongs to the workspace, and by clicking on it you send an instruction to the workspace. While scripting you can do the same via the variable that refers to the workspace: you write the variable (worksp or nutshellWorkspace), add a dot, and then write the name of the command. Command names –and the same goes for parameter names- are written in the script as they appear in Nutshell, with as exception that all spaces are deleted. The Nutshell command “Reset Layer Nodes” thus becomes resetlayernodes. With variable name the scripting command is: worksp.resetlayernodes
You still have to specify which layer needs resetting. You do this by writing the name of the layer behind the command. You can do this via a variable that refers to the layer (e.g., layer) or via the workspace and layer number (e.g., worksp.layer(0)). The full scripting command then is:

worksp.ResetLayerNodes worksp.layer(0)

A second example: Insert Tract. To make a tract in Nutshell you select two layers: one from which the tract originates and one to which it goes (if you select one layer and press 'Insert Tract', Nutshell assumes that that layer needs connecting with itself). While scripting, you write those two layers after one another, with a comma in between. As with 'reset', the command starts with the variable worksp, then a dot, and then the command name without spaces: InsertTract. Then you specify which layers you connect with the tract. Say that it goes from layer 0 to layer 1. Connectionists have the rather unintuitive convention that the receiver is listed first, and only then the sender. Therefore the layer to which the tract goes comes first, followed by the sending layer. With a comma to separate the two:

worksp.InsertTract worksp.layer(1), worksp.layer(0)

In the Hopfield paradigm you are now done. In the MacGregor paradigm and many others you have to give more information: the command "Insert Tract" has arguments in those paradigms.
 Open a new MacGregor workspace in Nutshell, create two layers, select them both (press shift while clicking on both layers), and press 'Insert Tract. A dialog box opens in which you have to enter two arguments: you have to set the value of the learning rate mu (the value you enter here will be taken as both positive and negative learning rate; paramaters muNegHet and muPos), and to mark whether the tract has normalizing weights (i.e., whether the sum of all weights to a node remains constant). A mark behind "Normalizing" means 'true' (=the tract is normalizing), no mark means ‘false’. During scripting you put the value of these arguments, with commas in between, after the layers. Say that you want to set the learning rate to 0.1, and you want non-normalizing weights. Then you write:

worksp.InsertTract worksp.layer(1), worksp.layer(0), 0.1, false

There must be as many comma-separated values behind the layers as there are arguments in Nutshell, otherwise you get an error message.

But now both positive and negative learning rates have been set to 0.1. If you want to change this you can also set the properties of the tract directly by declaring a variable for the tract and getting the tract from Nutshell. If you have the tract object you can access all of its parameters, use the paradigm help to see which are available. Consider the following example:

Dim currentTract as Object

Set currentTract = worksp.tracts(worksp.layer(1), worksp.later(0))

currentTract.muPos = muPos

currentTract.muHet = muNegHet

currentTract.muHom = 0
The recipe for translation Nutshell commands to scripting commands is thus:

· Start with a variable, usually called 'workspace' or 'worksp', that refers to the Nutshell workspace

· After this variable write a dot and the name of a Nutshell command without spaces; e.g:

worksp.ThisIsACommand

· If in Nutshell you have to select something to perform the command on –e.g., a layer, tract or node – then the name of or a reference to this object needs to be put after the command name (if nothing needs to be selected, you don’t add anything). You can write either the name of a variable that refers to the layer of tract, or a reference via the construction with numbers starting from ‘worksp’.

worksp.ThisIsACommand layerNameOrSomething

· You might have to add arguments to the command. You can see what arguments are necessary by executing the command in Nutshell: if there are any, you’ll get a dialog box in which you see what arguments there are, what their order is, and what kind of values they need. For each argument, add a value, separated by commas, behind the scripting command:

worksp.ThisIsACommand layerNameOrSomething, argument1, argument2

Setting values of node parameters such as activation or firing

Setting parameters via scripting is similar to executing commands: you simulate what you do in the Nutshell environment. In Nutshell you can select an object and look at its parameters. The same you can do with scripting, using the hierarchy of objects that was introduced in the “How does one refer” section.

The names of parameters are different in each paradigm. In the MacGregor paradigm nodes have the-parameters "Membrane" and "Fires" (to see them: select in a MacGregor workspace a node, click right mouse button, and then select “parameters” under the "node(x)" option). Suppose you want to change "membrane" (the membrane potential) of node 0 of the first layer to 1. The scripting command for that is:

worksp.layers(0).nodes(0).membrane = 1.0

Using an variable that was set earlier, for example layer that refers to the first layer, the command would be:

layer.nodes(0).membrane = 1.0

Membrane is a parameter that requires real numbers as values (such parameters have maximum and minimum values, which you find in the Nutshell help for specific paradigms). There are also other kinds of parameters: those that only accept 'integers' as values (=natural numbers), or 'booleans' that only accept ‘true’ or ‘false’. In the MacGregor paradigm ‘fires’ is such a parameter: it is ‘true’ when the node fires, and ‘false’ when it doesn’t (normalizing of tracts, discussed above, is also a boolean). You can set such a parameter as follows (again for the 0th node):

layer.nodes(0).Fires = true

Setting a weight

Say that you want to set the weight from the fourth node of the first layer in the model to the second node of the second layer in the model to 0.5. The scripting command for that is (assuming layerOne and layerTwo are set beforehand):

worksp.Tracts(layerTwo, layerOne).connections(2,4).Weight = 0.5

Following connectionist conventions receivers come first, both at the level of tracts and of individual connections. Tracts(layerTwo, layerOne) is thus the tract from the first to the second layer and Tracts(…).connections(2,4) the connection from the 4th node in the first layer to the 2 node in the second layer. You then select the parameter ‘weight’ of this connection, and set it to 0.5.

Setting the learning rate

Say that you want to set the learning rate parameter, usually called ‘mu’ but in MacGregor mPpos (positive mu)
, to 40 in the ‘tract’ from the first layer to the second layer. Again we use variables to refer to layers, and again the receiver comes first in naming the tract. You write:

worksp.Tracts(layerTwo, layerOne).muPos = 40
In most paradigms the learning rate belongs to a ‘tract’ (the bundle of connections from one layer to another). This means that if you set the learning rate in the tract from layer 1 to layer 2, nothing happens to the learning rate from layer 2 to layer 3 (or of layer 2 to layer 1). The Backprop paradigm is an exception: there, the learning rate is the same for the whole Workspace. In this case you set this parameter (called 'eta') as follows:

workspace.eta = 0.05

Learning and updating activation
Learning and updating activation are commands that are not tied to a layer or tract, but to a workspace. In scripting, you therefore give the instruction with commands to the workspace. For updating activation (=calculating it for one or more iterations) this is:

worksp.ActCycle

Only activation is updated with this command, no learning takes place. This is done for a number of iterations; the workspace-level parameter 'Cycle Steps' determines how many. Default value of this parameter is 1 in all paradigms except Hopfield. In Hopfield the default is 100. You can set the parameter as follows:

worksp.CycleSteps = 50

To be certain that there is no more than 1 iteration, you can in many paradigms use the command:

worksp.ActStep

For learning there is the command:

worksp.learn

In most paradigms this updates weights once; how it happens depends on the learning rule of the paradigm. In the MacGregor-paradigm there is also a commando for simultaneously updating weights and activation (there is a curiosity in how weights are updated, explained in the MacGregor assignment):

worksp.cycle

Resetting a layer

Has been explained above. Using the variable layer:

worksp.resetlayernodes layer

How resetting is done depends on the paradigm. In Hopfield activation is reset to random values, in Kohonen, TraceLink en CALM it is reset to 0. In MacGregor a reset sets firing to false, and all activations and potassium values to 0. In all paradigms nodes stay clamped or deactivated during resetting if they were so.

Clamping and deactivating

Whether a node is clamped or deactivated is a node-parameter. You can set them in a script in the same way as other node parameters:

layer.nodes(0).clamped = True (or: " = False")

layer.nodes(0).deactivated = True (or: " = False")

If you want to clamp or deactivate a whole layer at once you can do that as follows:

layer.clamped = False

layer.deactivated = True

Seeing what happens

‘Default’ in Nutshell is that you do not see any change in a workspace while a script plays around with it. To see on your screen how the workspace is doing you have to add a special command to the script:

workspace.update

Place this command at each script location where you want to see what happens.

Appendix 2. Model neuron

MacGregor and Oliver (1974)derived their model neuron from the Hodgkin-Huxley (1952) formulas to account for firing characteristics in single neurons, while being computationally inexpensive enough for use in large-scale networks. These model neurons show spiking, adaptation, and threshold accommodation (accommodation was not implemented in the present simulations). They are updated in discrete time steps, which in our simulations lasted 1 ms.

The model neuron emits a spike every time the membrane potential E crosses the threshold :

Equation 1:

[image: image1.wmf]1

=

Þ

³

S

E

q

In this equation S is a dichotomous variable that is equal to 1 if the node emits a spike, and equals 0 otherwise. The membrane potential, E, is dependent on the sodium, potassium and chloride currents over the membrane, as described in the following differential equation:

Equation 2:

[image: image2.wmf]SE

E

E

g

E

E

g

E

E

g

E

dt

dE

i

i

ex

ex

k

k

-

-

-

-

-

-

-

-

=

)

(

)

(

)

(

d

Here, - is the leak current, gex the excitatory conductance, Eex the sodium reversal potential, gi the inhibitory conductance and Ei the chloride reversal potential. For computational purposes, both the membrane potential and the reversal potentials were mapped onto the interval [–1, 7] via a simple linear transformation (MacGregor & Oliver, 1974). Resting potential is equated to 0 (-75 mV), the firing threshold  to 1 (-60 mV), the sodium reversal potential to 7 (+30 mV), and both the potassium and chloride reversal potentials to –1 (-90 mV). The parameter governing the leak current, , is set to 1/7. When the node emits a spike, membrane potential is reset to resting level (via the term SE).

The potassium conductance gk models adaptation, and is determined by

Equation 3:

[image: image3.wmf]bS

g

dt

dg

k

k

+

-

=

t

where S is the spiking variable. The time constant  is set to 1/13, the gain parameter b to 0.35. Excitatory and inhibitory input (gex) is mediated via modeling of the excitatory glutamate (NMDA and AMPA) and inhibitory GABA (GABA-a and GABA-b) receptors. The receptor activation of all these receptors are approximated by a dual exponential equation
Equation 4:

[image: image4.wmf])

(

)

/

)

(

)

/

)

(

2

2

1

2

t

t

t

t

tdelay

tspike

t

tdelay

tspike

t

ij

j

e

e

W

N

-

-

-

-

-

-

-

-

å

where Wij is the weight from node j to node i, N is a normalization constant chosen so that the maximum value of conductance equals Wij, τ1 gives the rise time, τ2 is the decay time in milliseconds and tdelay is the synaptic delay between neurons i and j. The parameter tdelay = 1 for all receptor types.
NMDA receptor activation is modeled using a rise time τ1 = 20 and decay time τ2 = 50, AMPA activation is modeled using a rise time τ1 = 3 and decay time τ2 = 9, GABA-a modeling uses a rise time τ1 = 2 and decay time τ2 = 6 and GABA-b modeling uses τ1 = 360 and τ2 = 2240.
Hebbian learning is used, modeling LTP. Additionally both homo- and heterosynaptic LTD have been modeled. All forms of weight change are subject to the constraints that that a weight cannot be lower than 0 or exceed a maximum weight W. LTP is modeled by the conductance of NMDA at the postsynaptic neuron. The conductance changes are modeled according to equation 4 using the decay and rise times for NMDA. Computing the NMDA conductance for LTP uses a weight Wij equal to 1. A positive weight update is then given by
Equation 5:

[image: image5.wmf]NMDA

ij

w

+

=

D

+

m

where μ+ is the positive learning rate and NMDA the NMDA conductance.

Heterosynaptic LTD is modeled by subtracting an amount at every timestep
Equation 6:

[image: image6.wmf]Sj

w

het

ij

het

-

-

=

D

-

m

where μ-het is the negative learning rate and Sj is the spiking variable of the receiving node. Homosynaptic LTD is modeled according to equation 6
Equation 7:

[image: image7.wmf])

1

(

hom

hom

Sj

Si

w

ij

-

-

=

D

-

-

m

here μ-hom is the negative learning rate while Si and Sj are the spiking variables of the receiving and sending node respectively.
 Adapted from: Meeter, M., Talamini, L.M., & Murre, JMJ. (2004). Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus, 14, 722-741.
References
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of ion currents and its application to conduction and excitation in nerve membranes. Journal of Physiology (London), 117, 500-544.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA, 79, 2554-2558.

MacGregor, R. J., & Oliver, R. M. (1974). A model for repetetive firing in neurons. Cybernetik, 16, 53-64.

Meeter, M., Shohamy, D., & Myers, C. E. (2009). Acquired equivalence changes stimulus representations. Journal of the Experimental Analysis of Behavior, 91, 127-141.

Meeter, M., Talamini, L. M., & Murre, J. M. J. (2004). Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus, 14, 722-741.

Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral and Brain Sciences, 24(6), 1033-1094.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� At the UvA by Robert Berg, Jaap Murre and Eric Maryniak.

� If you want to use an altogether different data set, that is okay. Create a new worksheet in “opdr3 data sets”, and put your data in it in the same format as the others: with the data from cell B5 down and to the right, and each variable in a new column. You can then do the assignment as normal.

� An argument of a function or procedure is a value that you have to add to specify what exactly will happen. In the function 'plus' (x + y) one has two arguments: x and y, the numbers to be added together. In the command 'Insert Layer' the width and height of the to-be produced layer are the arguments.

� in MacGregor paradigms there are three learning rate parameters: ‘muPos’ the positive learning rate, ‘muNegHet’ the negative learning rate and ‘muHom’. See the relevant exercise for information on these parameters

2

[image: image17.wmf]j

i

ij

a

a

w

=

D

[image: image18.wmf]ï

ï

î

ï

ï

í

ì

>

£

-

=

å

å

¹

=

¹

=

n

i

j

j

ij

j

n

i

j

j

ij

j

i

w

a

if

w

a

if

a

1

1

0

1

0

1

[image: image19.wmf])

1

2

(

-

=

D

j

i

ij

a

a

w

[image: image20.wmf])

1

(

_1087126148.unknown

_1254811325.unknown

_1254812624.unknown

_1254817626.unknown

_1254811628.unknown

_1254809038.unknown

_1038215273.unknown

_1087126119.unknown

_1038128862.unknown

_1038132342.unknown

_1038127009.unknown

