
Learning Neural Networks: 

Perceptron and Backpropagation 

Jaap Murre 

University of Amsterdam and  

University of Maastricht 

jaap@murre.com 



Two main forms of learning 

 Associative (Hebbian) learning 

 Error-correcting learning 

– Perceptron 

– Delta rule 

– Error-backpropagation 

 aka generalized delta rule 

 aka multilayer perceptron 

 



The Perceptron by Frank 

Rosenblatt (1958, 1962) 

 Two-layers 

 binary nodes (McCulloch-Pitts nodes) that 

take values 0 or 1 

 continuous weights, initially chosen 

randomly 



Very simple example 

0 1 

0 

-0.1 0.4 

net input = 0.4  0 + -0.1  1 = -0.1 



Learning problem to be solved 

 Suppose we have an input pattern (0 1) 

 We have a single output pattern (1) 

 We have a net input of -0.1, which gives an 

output pattern of (0) 

 How could we adjust the weights, so that 

this situation is remedied and the 

spontaneous output matches our target 

output pattern of (1)? 



Answer 

 Increase the weights, so that the net input 

exceeds 0.0 

 E.g., add 0.2 to all weights 

 Observation: Weight from input node with 

activation 0 does not have any effect on the 

net input 

 So we will leave it alone 



Perceptron algorithm in words 

For each node in the output layer: 

– Calculate the error, which can only take the 
values -1, 0, and 1 

– If the error is 0, the goal has been achieved. 
Otherwise, we adjust the weights 

– Do not alter weights from inactivated input 
nodes  

– Increase the weight if the error was 1, decrease 
it if the error was -1 

 



Perceptron algorithm in rules 

 weight change = some small constant  

(target activation - spontaneous output 

activation)  input activation 

 if speak of error instead of the “target 

activation minus the spontaneous output 

activation”, we have: 

 weight change = some small constant  

error  input activation 



Perceptron algorithm as equation 

 If we call the input node i and the output 
node j we have: 

wji =  (tj - aj) ai =  jai 

 wji is the weight change of the connection 
from node i to node j 

 ai is the activation of node i, aj of node j 

 tj is the target value for node j 

 j is the error for node j 

 The learning constant  is typically chosen 
small (e.g., 0.1). 



Perceptron algorithm in pseudo-code 

Start with random initial weights (e.g., uniform random in [-.3,.3]) 

 

Do 

{ 

  For All Patterns p 

  { 

    For All Output Nodes j 

    { 

      CalculateActivation(j) 

 

      Error_j = TargetValue_j_for_Pattern_p - Activation_j 

 

      For All Input Nodes i To Output Node j 

      { 

        DeltaWeight = LearningConstant * Error_j * Activation_i 

        Weight = Weight + DeltaWeight 

      } 

    } 

  } 

} 

Until "Error is sufficiently small" Or "Time-out" 



Perceptron convergence theorem 

 If a pattern set can be represented by a two-

layer Perceptron, … 

 the Perceptron learning rule will always be 

able to find some correct weights 

http://theinfosphere.org/File:Perceptron.png


The Perceptron was a big hit 

 Spawned the first wave in ‘connectionism’ 

 Great interest and optimism about the future 

of neural networks 

 First neural network hardware was built in 

the late fifties and early sixties 



Limitations of the Perceptron 

 Only binary input-output values 

 Only two layers 



Only binary input-output values 

 This was remedied in 1960 by Widrow and 

Hoff 

 The resulting rule was called the delta-rule 

 It was first mainly applied by engineers 

 This rule was much later shown to be 

equivalent to the Rescorla-Wagner rule 

(1976) that describes animal conditioning 

very well 



Only two layers 

 Minsky and Papert (1969) showed that a 

two-layer Perceptron cannot represent 

certain logical functions 

 Some of these are very fundamental, in 

particular the exclusive or (XOR) 

 Do you want coffee XOR tea? 



Exclusive OR (XOR) 

0 1 

1 

0.1 0.4 

In  Out 

0 1   1 

1 0   1 

1 1   0 

0 0   0 



An extra layer is necessary to 

represent the XOR 

 No solid training procedure existed in 1969 

to accomplish this 

 Thus commenced the search for the 

third or hidden layer 



Minsky and Papert book caused 

the ‘first wave’ to die out 
 GOOFAI was increasing in popularity 

 Neural networks were very much out 

 A few hardy pioneers continued 

 Within five years a variant was developed 

by Paul Werbos that was immune to the 

XOR problem, but few noticed this 

 Even in Rosenblatt’s book many examples 

of more sophisticated Perceptrons are given 

that can learn the XOR 



Error-backpropagation 

 What was needed, was an algorithm to train 
Perceptrons with more than two layers 

 Preferably also one that used continuous 
activations and non-linear activation rules 

 Such an algorithm was developed by 

– Paul Werbos in 1974 

– David Parker in 1982 

– LeCun in 1984 

– Rumelhart, Hinton, and Williams in 1986 



Error-backpropagation by 

Rumelhart, Hinton, and Williams 

Meet the hidden layer 



The problem to be solved 

 It is straightforward to adjust the weights to 

the output layer, using the Perceptron rule 

 But how can we adjust the weights to the 

hidden layer? 



The backprop trick 

 To find the error value for a given node h in 
a hidden layer, … 

 Simply take the weighted sum of the errors 
of all nodes connected from node h  

 i.e., of all nodes that have an incoming 
connection from node h: 

1 2 3 n 

w1 
w2 w3 wn 

h = w11 + w22 + w33 + … + wnn Node h 

This is backpropgation of errors 

To-nodes of h 



Characteristics of backpropagation 

 Any number of layers 

 Only feedforward, no cycles (though a more 
general versions does allow this) 

 Use continuous nodes 

– Must have differentiable activation rule 

– Typically, logistic: S-shape between 0 and 1 

 Initial weights are random 

 Total error never increases (gradient descent 
in error space) 



The gradient descent makes sense 

mathematically 

 It does not guarantee high performance 

 It does not prevent local minima 

 The learning rule is more complicated and 

tends to slow down learning unnecessary 

when the logistic function is used 



Logistic function 

 S-shaped between 0 and 1 

 Approaches a linear function around x = 0 

 Its rate-of-change (derivative) for a node 

with a given activation is:  

   activation  (1 - activation) 



Backpropagation algorithm in 

rules 

 weight change = some small constant  

error  input activation 

 For an output node, the error is: 

error = (target activation - output activation)  

output activation  (1 - output activation) 

 For a hidden node, the error is: 

error = weighted sum of to-node errors  hidden 

activation  (1 - hidden activation) 

 



Weight change and momentum 

 backpropagation algorithm often takes a 
long time to learn  

 So, the learning rule is often augmented 
with a so called momentum term  

 This consist in adding a fraction of the old 
weight change 

 The learning rule then looks like: 

weight change = some small constant  error  
input activation + momentum constant  old 
weight change 

 



Backpropagation in equations I 

 If j is a node in an output layer, the error j 

is: 

j = (tj - aj) aj(1-aj ) 

 where aj is the activation of node j 

 tj is its target activation value, and  

 j  its error value 

 



Backpropagation in equations II 

 If j is a node in a hidden layer, and if there 

are k nodes 1, 2, …, k, that receive a 

connection from j, the error j is: 

 j = (w1j 1 + w2j 1 + … + wkjk) aj (1-aj ) 

 where the weights w1j , w2j , …, wkj belong 

to the connections from hidden node j to 

nodes 1, 2, …, k. 



Backpropagation in equations III 

 The backpropagation learning rule (applied 
at time t) is:  

wji(t) =  jai + wji(t-1) 

 where wji (t)  is the change in the weight 
from node i to node j at time t,  

 The learning constant  is typically chosen 
rather small (e.g., 0.05).  

 The momentum term  is typically chosen 
around 0.5. 



NetTalk: Backpropagation’s 

‘killer-app’ 

 Text-to-speech converter 

 Developed by Sejnowski and Rosenberg 

(1986) 

 Connectionism’s answer to DECTalk 

 Learned to pronounce text with an error 

score comparable to DECTalk 

 Was trained, not programmed 

 Input was letter-in-context, output phoneme 



Despite its popularity backpropagation 

has some disadvantages 

 Learning is slow 

 New learning will rapidly overwrite old 

representations, unless these are interleaved 

(i.e., repeated) with the new patterns 

 This makes it hard to keep networks up-to-

date with new information (e.g., dollar rate) 

 This also makes it very implausible from as 

a psychological model of human memory 



Good points 

 Easy to use 

– Few parameters to set 

– Algorithm is easy to implement 

 Can be applied to a wide range of data 

 Is very popular 

 Has contributed greatly to the ‘new 

connectionism’ (second wave) 



Conclusion 

 Error-correcting learning has been very 

important in the brief history of 

connectionism 

 Despite its limited plausibility as a 

psychological model of learning and 

memory, it is nevertheless used widely (also 

in psychology) 


