
Learning Neural Networks:

Perceptron and Backpropagation

Jaap Murre

University of Amsterdam and

University of Maastricht

jaap@murre.com

Two main forms of learning

 Associative (Hebbian) learning

 Error-correcting learning

– Perceptron

– Delta rule

– Error-backpropagation

 aka generalized delta rule

 aka multilayer perceptron

The Perceptron by Frank

Rosenblatt (1958, 1962)

 Two-layers

 binary nodes (McCulloch-Pitts nodes) that

take values 0 or 1

 continuous weights, initially chosen

randomly

Very simple example

0 1

0

-0.1 0.4

net input = 0.4 0 + -0.1 1 = -0.1

Learning problem to be solved

 Suppose we have an input pattern (0 1)

 We have a single output pattern (1)

 We have a net input of -0.1, which gives an

output pattern of (0)

 How could we adjust the weights, so that

this situation is remedied and the

spontaneous output matches our target

output pattern of (1)?

Answer

 Increase the weights, so that the net input

exceeds 0.0

 E.g., add 0.2 to all weights

 Observation: Weight from input node with

activation 0 does not have any effect on the

net input

 So we will leave it alone

Perceptron algorithm in words

For each node in the output layer:

– Calculate the error, which can only take the
values -1, 0, and 1

– If the error is 0, the goal has been achieved.
Otherwise, we adjust the weights

– Do not alter weights from inactivated input
nodes

– Increase the weight if the error was 1, decrease
it if the error was -1

Perceptron algorithm in rules

 weight change = some small constant

(target activation - spontaneous output

activation) input activation

 if speak of error instead of the “target

activation minus the spontaneous output

activation”, we have:

 weight change = some small constant

error input activation

Perceptron algorithm as equation

 If we call the input node i and the output
node j we have:

wji = (tj - aj) ai = jai

 wji is the weight change of the connection
from node i to node j

 ai is the activation of node i, aj of node j

 tj is the target value for node j

 j is the error for node j

 The learning constant is typically chosen
small (e.g., 0.1).

Perceptron algorithm in pseudo-code

Start with random initial weights (e.g., uniform random in [-.3,.3])

Do

{

 For All Patterns p

 {

 For All Output Nodes j

 {

 CalculateActivation(j)

 Error_j = TargetValue_j_for_Pattern_p - Activation_j

 For All Input Nodes i To Output Node j

 {

 DeltaWeight = LearningConstant * Error_j * Activation_i

 Weight = Weight + DeltaWeight

 }

 }

 }

}

Until "Error is sufficiently small" Or "Time-out"

Perceptron convergence theorem

 If a pattern set can be represented by a two-

layer Perceptron, …

 the Perceptron learning rule will always be

able to find some correct weights

http://theinfosphere.org/File:Perceptron.png

The Perceptron was a big hit

 Spawned the first wave in ‘connectionism’

 Great interest and optimism about the future

of neural networks

 First neural network hardware was built in

the late fifties and early sixties

Limitations of the Perceptron

 Only binary input-output values

 Only two layers

Only binary input-output values

 This was remedied in 1960 by Widrow and

Hoff

 The resulting rule was called the delta-rule

 It was first mainly applied by engineers

 This rule was much later shown to be

equivalent to the Rescorla-Wagner rule

(1976) that describes animal conditioning

very well

Only two layers

 Minsky and Papert (1969) showed that a

two-layer Perceptron cannot represent

certain logical functions

 Some of these are very fundamental, in

particular the exclusive or (XOR)

 Do you want coffee XOR tea?

Exclusive OR (XOR)

0 1

1

0.1 0.4

In Out

0 1 1

1 0 1

1 1 0

0 0 0

An extra layer is necessary to

represent the XOR

 No solid training procedure existed in 1969

to accomplish this

 Thus commenced the search for the

third or hidden layer

Minsky and Papert book caused

the ‘first wave’ to die out
 GOOFAI was increasing in popularity

 Neural networks were very much out

 A few hardy pioneers continued

 Within five years a variant was developed

by Paul Werbos that was immune to the

XOR problem, but few noticed this

 Even in Rosenblatt’s book many examples

of more sophisticated Perceptrons are given

that can learn the XOR

Error-backpropagation

 What was needed, was an algorithm to train
Perceptrons with more than two layers

 Preferably also one that used continuous
activations and non-linear activation rules

 Such an algorithm was developed by

– Paul Werbos in 1974

– David Parker in 1982

– LeCun in 1984

– Rumelhart, Hinton, and Williams in 1986

Error-backpropagation by

Rumelhart, Hinton, and Williams

Meet the hidden layer

The problem to be solved

 It is straightforward to adjust the weights to

the output layer, using the Perceptron rule

 But how can we adjust the weights to the

hidden layer?

The backprop trick

 To find the error value for a given node h in
a hidden layer, …

 Simply take the weighted sum of the errors
of all nodes connected from node h

 i.e., of all nodes that have an incoming
connection from node h:

1 2 3 n

w1
w2 w3 wn

h = w11 + w22 + w33 + … + wnn Node h

This is backpropgation of errors

To-nodes of h

Characteristics of backpropagation

 Any number of layers

 Only feedforward, no cycles (though a more
general versions does allow this)

 Use continuous nodes

– Must have differentiable activation rule

– Typically, logistic: S-shape between 0 and 1

 Initial weights are random

 Total error never increases (gradient descent
in error space)

The gradient descent makes sense

mathematically

 It does not guarantee high performance

 It does not prevent local minima

 The learning rule is more complicated and

tends to slow down learning unnecessary

when the logistic function is used

Logistic function

 S-shaped between 0 and 1

 Approaches a linear function around x = 0

 Its rate-of-change (derivative) for a node

with a given activation is:

 activation (1 - activation)

Backpropagation algorithm in

rules

 weight change = some small constant

error input activation

 For an output node, the error is:

error = (target activation - output activation)

output activation (1 - output activation)

 For a hidden node, the error is:

error = weighted sum of to-node errors hidden

activation (1 - hidden activation)

Weight change and momentum

 backpropagation algorithm often takes a
long time to learn

 So, the learning rule is often augmented
with a so called momentum term

 This consist in adding a fraction of the old
weight change

 The learning rule then looks like:

weight change = some small constant error
input activation + momentum constant old
weight change

Backpropagation in equations I

 If j is a node in an output layer, the error j

is:

j = (tj - aj) aj(1-aj)

 where aj is the activation of node j

 tj is its target activation value, and

 j its error value

Backpropagation in equations II

 If j is a node in a hidden layer, and if there

are k nodes 1, 2, …, k, that receive a

connection from j, the error j is:

 j = (w1j 1 + w2j 1 + … + wkjk) aj (1-aj)

 where the weights w1j , w2j , …, wkj belong

to the connections from hidden node j to

nodes 1, 2, …, k.

Backpropagation in equations III

 The backpropagation learning rule (applied
at time t) is:

wji(t) = jai + wji(t-1)

 where wji (t) is the change in the weight
from node i to node j at time t,

 The learning constant is typically chosen
rather small (e.g., 0.05).

 The momentum term is typically chosen
around 0.5.

NetTalk: Backpropagation’s

‘killer-app’

 Text-to-speech converter

 Developed by Sejnowski and Rosenberg

(1986)

 Connectionism’s answer to DECTalk

 Learned to pronounce text with an error

score comparable to DECTalk

 Was trained, not programmed

 Input was letter-in-context, output phoneme

Despite its popularity backpropagation

has some disadvantages

 Learning is slow

 New learning will rapidly overwrite old

representations, unless these are interleaved

(i.e., repeated) with the new patterns

 This makes it hard to keep networks up-to-

date with new information (e.g., dollar rate)

 This also makes it very implausible from as

a psychological model of human memory

Good points

 Easy to use

– Few parameters to set

– Algorithm is easy to implement

 Can be applied to a wide range of data

 Is very popular

 Has contributed greatly to the ‘new

connectionism’ (second wave)

Conclusion

 Error-correcting learning has been very

important in the brief history of

connectionism

 Despite its limited plausibility as a

psychological model of learning and

memory, it is nevertheless used widely (also

in psychology)

