Learning Neural Networks:
Perceptron and Backpropagation

Jaap Murre
University of Amsterdam and
University of Maastricht
jaap@murre.com

Two main forms of learning

Associative (Hebbian) learning

Error-correcting learning
Perceptron
Delta rule

Error-backpropagation
aka generalized delta rule
aka multilayer perceptron

The Perceptron by Frank
Rosenblatt (1958, 1962)

Two-layers

binary nodes (McCulloch-Pitts nodes) that
take values O or 1

continuous weights, initially chosen
randomly

Very simple example

netinput=04x0+-01x1=-0.1

0.4 -0.1

Learning problem to be solved

Suppose we have an input pattern (0 1)
We have a single output pattern (1)

We have a net input of -0.1, which gives an
output pattern of (0)

How could we adjust the weights, so that
this situation 1s remedied and the
spontaneous output matches our target
output pattern of (1)?

Answer

Increase the weights, so that the net input
exceeds 0.0

E.g., add 0.2 to all weights

Observation: Weight from input node with
activation 0 does not have any effect on the
net Input

So we will leave 1t alone

Perceptron algorithm in words

For each node in the output layer:

Calculate the error, which can only take the
values -1, 0, and 1

If the error is O, the goal has been achieved.
Otherwise, we adjust the weights

Do not alter weights from inactivated input
nodes

Increase the weight if the error was 1, decrease
It if the error was -1

Perceptron algorithm in rules

welght change = some small constant x
(target activation - spontaneous output
activation) x input activation

If speak of error instead of the “target
activation minus the spontaneous output
activation”, we have:

welght change = some small constant x
error x Input activation

Perceptron algorithm as equation

If we call the input node 1 and the output
node | we have:
Aw;; = p (8- ;) & = p o,

Aw;; IS the Welght change of the connection
from node i to node j J

a; Is the activation of node I, a; of node }
{ is the target value for node |
0; 1S the error for node J

The learning constant u Is typically chosen
small (e.g., 0.1).

Perceptron algorithm in pseudo-code

Start with random initial weights (e.g., uniform random in [-.3,.3])

Do

{
For All Patterns p
{
For All Output Nodes j
{
CalculateActivation (j)

Error j = TargetValue j for Pattern p - Activation j

For All Input Nodes i To Output Node j
{

DeltaWeight = LearningConstant * Error j * Activation i
Weight = Weight + DeltaWeight
}

}

Until "Error is sufficiently small" Or "Time-out"

Perceptron convergence theorem

If a pattern set can be represented by a two-
layer Perceptron, ...

the Perceptron learning rule will always be
able to find some correct weights

http://theinfosphere.org/File:Perceptron.png

The Perceptron was a big hit

Spawned the first wave 1n ‘connectionism’

Great interest and optimism about the future
of neural networks

First neural network hardware was built In
the late fifties and early sixties

Limitations of the Perceptron

Only binary input-output values
Only two layers

Only binary input-output values

This was remedied in 1960 by Widrow and
Hoff

The resulting rule was called the delta-rule
It was first mainly applied by engineers

This rule was much later shown to be
equivalent to the Rescorla-Wagner rule
(1976) that describes animal conditioning
very well

Only two layers

Minsky and Papert (1969) showed that a
two-layer Perceptron cannot represent
certain logical functions

Some of these are very fundamental, In
particular the exclusive or (XOR)

Do you want coffee XOR tea?

Exclusive OR (XOR)

In Out 1

01 1

10 1 0.4 0.1
11 0

00 0

An extra layer Is necessary to
represent the XOR

No solid training procedure existed in 1969
to accomplish this

Thus commenced the search for the
third or hidden layer

Minsky and Papert book caused

the ‘first wave’ to die out
GOOFAI was increasing In popularity

Neural networks were very much out
A few hardy pioneers continued

Within five years a variant was developed
by Paul Werbos that was immune to the
XOR problem, but few noticed this

Even 1n Rosenblatt’s book many examples
of more sophisticated Perceptrons are given
that can learn the XOR

Error-backpropagation

What was needed, was an algorithm to train
Perceptrons with more than two layers

Preferably also one that used continuous
activations and non-linear activation rules

Such an algorithm was developed by
Paul Werbos in 1974

David Parker in 1982

L eCun In 1984

Rumelhart, Hinton, and Williams in 1986

Error-backpropagation by
Rumelhart, Hinton, and Williams

Meet the hidden layer

Output layer

Hidden layer

Input layer

The problem to be solved

It Is straightforward to adjust the weights to
the output layer, using the Perceptron rule

But how can we adjust the weights to the
hidden layer?

The backprop trick

To find the error value for a given node h in
a hidden layer, ...

Simply take the weighted sum of the errors
of all nodes connected from node h

l.e., of all nodes that have an incoming

connection from node h: To-nodes of h
5, 8,8, 5

This Is hackpropgation of errors

Characteristics of backpropagation

Any number of layers

Only feedforward, no cycles (though a more
general versions does allow this)
Use continuous nodes
Must have differentiable activation rule
Typically, logistic: S-shape between 0 and 1
Initial weights are random

Total error never increases (gradient descent
In error space)

The gradient descent makes sense
mathematically

It does not guarantee high performance
It does not prevent local minima

The learning rule is more complicated and
tends to slow down learning unnecessary
when the logistic function Is used

Logistic function

S-shaped between 0 and 1
Approaches a linear function around x =0

Its rate-of-change (derivative) for a node
with a given activation Is:

activation x (1 - activation)

Backpropagation algorithm In
rules

welght change = some small constant x
error x Input activation

For an output node, the error Is:

error = (target activation - output activation) x
output activation x (1 - output activation)

For a hidden node, the error Is:

error = weighted sum of to-node errors x hidden
activation x (1 - hidden activation)

Weight change and momentum

backpropagation algorithm often takes a
long time to learn

So, the learning rule is often augmented
with a so called momentum term

This consist in adding a fraction of the old
welght change

The learning rule then looks like:

weight change = some small constant x error x
Input activation + momentum constant x old

weight change

Backpropagation in equations |

If J Is a node In an output layer, the error o;
IS:

where a; Is the activation of node }
tj Is Its target activation value, and

Sj Its error value

Backpropagation in equations I

If J Is a node In a hidden layer, and If there
are Kknodes 1, 2, ..., k, that recelve a
connection from J, the error g; Is:

0; = (le Op+ Wy 0y + ...+ ij8k) a, (1-aj)

where the weights wy;, wy, ..., w; belong
to the connections from hidden node j to
nodes 1,2, ..., k.

Backpropagation in equations Il

The backpropagation learning rule (applied
at time t) Is:

Awji(t) = p&;a; + PAw;;(t-1)
where Aw;; (t) Is the change In the weight
from node 1 to node j at time t,

The learning constant u Is typically chosen
rather small (e.g., 0.05).

The momentum term [Is typically chosen
around 0.5.

NetTalk: Backpropagation’s
‘killer-app’

Text-to-speech converter

Developed by Sejnowski and Rosenberg
(1986)

Connectionism’s answer to DECTalk

|_earned to pronounce text with an error
score comparable to DECTalk

Was trained, not programmed
Input was letter-in-context, output phoneme

Despite its popularity backpropagation
has some disadvantages

Learning is slow

New learning will rapidly overwrite old
representations, unless these are interleaved
(1.e., repeated) with the new patterns

This makes It hard to keep networks up-to-
date with new information (e.g., dollar rate)

This also makes it very implausible from as
a psychological model of human memory

Good points

Easy to use
Few parameters to set
Algorithm is easy to implement

Can be applied to a wide range of data
Is very popular

Has contributed greatly to the ‘new
connectionism’ (second wave)

Conclusion

Error-correcting learning has been very
Important in the brief history of
connectionism

Despite its limited plausibility as a
psychological model of learning and
memory, It IS nevertheless used widely (also

In psychology)

