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Two main forms of learning 

 Associative (Hebbian) learning 

 Error-correcting learning 

– Perceptron 

– Delta rule 

– Error-backpropagation 

 aka generalized delta rule 

 aka multilayer perceptron 

 



The Perceptron by Frank 

Rosenblatt (1958, 1962) 

 Two-layers 

 binary nodes (McCulloch-Pitts nodes) that 

take values 0 or 1 

 continuous weights, initially chosen 

randomly 



Very simple example 

0 1 

0 

-0.1 0.4 

net input = 0.4  0 + -0.1  1 = -0.1 



Learning problem to be solved 

 Suppose we have an input pattern (0 1) 

 We have a single output pattern (1) 

 We have a net input of -0.1, which gives an 

output pattern of (0) 

 How could we adjust the weights, so that 

this situation is remedied and the 

spontaneous output matches our target 

output pattern of (1)? 



Answer 

 Increase the weights, so that the net input 

exceeds 0.0 

 E.g., add 0.2 to all weights 

 Observation: Weight from input node with 

activation 0 does not have any effect on the 

net input 

 So we will leave it alone 



Perceptron algorithm in words 

For each node in the output layer: 

– Calculate the error, which can only take the 
values -1, 0, and 1 

– If the error is 0, the goal has been achieved. 
Otherwise, we adjust the weights 

– Do not alter weights from inactivated input 
nodes  

– Increase the weight if the error was 1, decrease 
it if the error was -1 

 



Perceptron algorithm in rules 

 weight change = some small constant  

(target activation - spontaneous output 

activation)  input activation 

 if speak of error instead of the “target 

activation minus the spontaneous output 

activation”, we have: 

 weight change = some small constant  

error  input activation 



Perceptron algorithm as equation 

 If we call the input node i and the output 
node j we have: 

wji =  (tj - aj) ai =  jai 

 wji is the weight change of the connection 
from node i to node j 

 ai is the activation of node i, aj of node j 

 tj is the target value for node j 

 j is the error for node j 

 The learning constant  is typically chosen 
small (e.g., 0.1). 



Perceptron algorithm in pseudo-code 

Start with random initial weights (e.g., uniform random in [-.3,.3]) 

 

Do 

{ 

  For All Patterns p 

  { 

    For All Output Nodes j 

    { 

      CalculateActivation(j) 

 

      Error_j = TargetValue_j_for_Pattern_p - Activation_j 

 

      For All Input Nodes i To Output Node j 

      { 

        DeltaWeight = LearningConstant * Error_j * Activation_i 

        Weight = Weight + DeltaWeight 

      } 

    } 

  } 

} 

Until "Error is sufficiently small" Or "Time-out" 



Perceptron convergence theorem 

 If a pattern set can be represented by a two-

layer Perceptron, … 

 the Perceptron learning rule will always be 

able to find some correct weights 

http://theinfosphere.org/File:Perceptron.png


The Perceptron was a big hit 

 Spawned the first wave in ‘connectionism’ 

 Great interest and optimism about the future 

of neural networks 

 First neural network hardware was built in 

the late fifties and early sixties 



Limitations of the Perceptron 

 Only binary input-output values 

 Only two layers 



Only binary input-output values 

 This was remedied in 1960 by Widrow and 

Hoff 

 The resulting rule was called the delta-rule 

 It was first mainly applied by engineers 

 This rule was much later shown to be 

equivalent to the Rescorla-Wagner rule 

(1976) that describes animal conditioning 

very well 



Only two layers 

 Minsky and Papert (1969) showed that a 

two-layer Perceptron cannot represent 

certain logical functions 

 Some of these are very fundamental, in 

particular the exclusive or (XOR) 

 Do you want coffee XOR tea? 



Exclusive OR (XOR) 

0 1 

1 

0.1 0.4 

In  Out 

0 1   1 

1 0   1 

1 1   0 

0 0   0 



An extra layer is necessary to 

represent the XOR 

 No solid training procedure existed in 1969 

to accomplish this 

 Thus commenced the search for the 

third or hidden layer 



Minsky and Papert book caused 

the ‘first wave’ to die out 
 GOOFAI was increasing in popularity 

 Neural networks were very much out 

 A few hardy pioneers continued 

 Within five years a variant was developed 

by Paul Werbos that was immune to the 

XOR problem, but few noticed this 

 Even in Rosenblatt’s book many examples 

of more sophisticated Perceptrons are given 

that can learn the XOR 



Error-backpropagation 

 What was needed, was an algorithm to train 
Perceptrons with more than two layers 

 Preferably also one that used continuous 
activations and non-linear activation rules 

 Such an algorithm was developed by 

– Paul Werbos in 1974 

– David Parker in 1982 

– LeCun in 1984 

– Rumelhart, Hinton, and Williams in 1986 



Error-backpropagation by 

Rumelhart, Hinton, and Williams 

Meet the hidden layer 



The problem to be solved 

 It is straightforward to adjust the weights to 

the output layer, using the Perceptron rule 

 But how can we adjust the weights to the 

hidden layer? 



The backprop trick 

 To find the error value for a given node h in 
a hidden layer, … 

 Simply take the weighted sum of the errors 
of all nodes connected from node h  

 i.e., of all nodes that have an incoming 
connection from node h: 

1 2 3 n 

w1 
w2 w3 wn 

h = w11 + w22 + w33 + … + wnn Node h 

This is backpropgation of errors 

To-nodes of h 



Characteristics of backpropagation 

 Any number of layers 

 Only feedforward, no cycles (though a more 
general versions does allow this) 

 Use continuous nodes 

– Must have differentiable activation rule 

– Typically, logistic: S-shape between 0 and 1 

 Initial weights are random 

 Total error never increases (gradient descent 
in error space) 



The gradient descent makes sense 

mathematically 

 It does not guarantee high performance 

 It does not prevent local minima 

 The learning rule is more complicated and 

tends to slow down learning unnecessary 

when the logistic function is used 



Logistic function 

 S-shaped between 0 and 1 

 Approaches a linear function around x = 0 

 Its rate-of-change (derivative) for a node 

with a given activation is:  

   activation  (1 - activation) 



Backpropagation algorithm in 

rules 

 weight change = some small constant  

error  input activation 

 For an output node, the error is: 

error = (target activation - output activation)  

output activation  (1 - output activation) 

 For a hidden node, the error is: 

error = weighted sum of to-node errors  hidden 

activation  (1 - hidden activation) 

 



Weight change and momentum 

 backpropagation algorithm often takes a 
long time to learn  

 So, the learning rule is often augmented 
with a so called momentum term  

 This consist in adding a fraction of the old 
weight change 

 The learning rule then looks like: 

weight change = some small constant  error  
input activation + momentum constant  old 
weight change 

 



Backpropagation in equations I 

 If j is a node in an output layer, the error j 

is: 

j = (tj - aj) aj(1-aj ) 

 where aj is the activation of node j 

 tj is its target activation value, and  

 j  its error value 

 



Backpropagation in equations II 

 If j is a node in a hidden layer, and if there 

are k nodes 1, 2, …, k, that receive a 

connection from j, the error j is: 

 j = (w1j 1 + w2j 1 + … + wkjk) aj (1-aj ) 

 where the weights w1j , w2j , …, wkj belong 

to the connections from hidden node j to 

nodes 1, 2, …, k. 



Backpropagation in equations III 

 The backpropagation learning rule (applied 
at time t) is:  

wji(t) =  jai + wji(t-1) 

 where wji (t)  is the change in the weight 
from node i to node j at time t,  

 The learning constant  is typically chosen 
rather small (e.g., 0.05).  

 The momentum term  is typically chosen 
around 0.5. 



NetTalk: Backpropagation’s 

‘killer-app’ 

 Text-to-speech converter 

 Developed by Sejnowski and Rosenberg 

(1986) 

 Connectionism’s answer to DECTalk 

 Learned to pronounce text with an error 

score comparable to DECTalk 

 Was trained, not programmed 

 Input was letter-in-context, output phoneme 



Despite its popularity backpropagation 

has some disadvantages 

 Learning is slow 

 New learning will rapidly overwrite old 

representations, unless these are interleaved 

(i.e., repeated) with the new patterns 

 This makes it hard to keep networks up-to-

date with new information (e.g., dollar rate) 

 This also makes it very implausible from as 

a psychological model of human memory 



Good points 

 Easy to use 

– Few parameters to set 

– Algorithm is easy to implement 

 Can be applied to a wide range of data 

 Is very popular 

 Has contributed greatly to the ‘new 

connectionism’ (second wave) 



Conclusion 

 Error-correcting learning has been very 

important in the brief history of 

connectionism 

 Despite its limited plausibility as a 

psychological model of learning and 

memory, it is nevertheless used widely (also 

in psychology) 


