
Learning Neural Networks:

Perceptron and Backpropagation

Jaap Murre

University of Amsterdam and

University of Maastricht

jaap@murre.com

Two main forms of learning

 Associative (Hebbian) learning

 Error-correcting learning

– Perceptron

– Delta rule

– Error-backpropagation

 aka generalized delta rule

 aka multilayer perceptron

The Perceptron by Frank

Rosenblatt (1958, 1962)

 Two-layers

 binary nodes (McCulloch-Pitts nodes) that

take values 0 or 1

 continuous weights, initially chosen

randomly

Very simple example

0 1

0

-0.1 0.4

net input = 0.4  0 + -0.1  1 = -0.1

Learning problem to be solved

 Suppose we have an input pattern (0 1)

 We have a single output pattern (1)

 We have a net input of -0.1, which gives an

output pattern of (0)

 How could we adjust the weights, so that

this situation is remedied and the

spontaneous output matches our target

output pattern of (1)?

Answer

 Increase the weights, so that the net input

exceeds 0.0

 E.g., add 0.2 to all weights

 Observation: Weight from input node with

activation 0 does not have any effect on the

net input

 So we will leave it alone

Perceptron algorithm in words

For each node in the output layer:

– Calculate the error, which can only take the
values -1, 0, and 1

– If the error is 0, the goal has been achieved.
Otherwise, we adjust the weights

– Do not alter weights from inactivated input
nodes

– Increase the weight if the error was 1, decrease
it if the error was -1

Perceptron algorithm in rules

 weight change = some small constant 

(target activation - spontaneous output

activation)  input activation

 if speak of error instead of the “target

activation minus the spontaneous output

activation”, we have:

 weight change = some small constant 

error  input activation

Perceptron algorithm as equation

 If we call the input node i and the output
node j we have:

wji =  (tj - aj) ai =  jai

 wji is the weight change of the connection
from node i to node j

 ai is the activation of node i, aj of node j

 tj is the target value for node j

 j is the error for node j

 The learning constant  is typically chosen
small (e.g., 0.1).

Perceptron algorithm in pseudo-code

Start with random initial weights (e.g., uniform random in [-.3,.3])

Do

{

 For All Patterns p

 {

 For All Output Nodes j

 {

 CalculateActivation(j)

 Error_j = TargetValue_j_for_Pattern_p - Activation_j

 For All Input Nodes i To Output Node j

 {

 DeltaWeight = LearningConstant * Error_j * Activation_i

 Weight = Weight + DeltaWeight

 }

 }

 }

}

Until "Error is sufficiently small" Or "Time-out"

Perceptron convergence theorem

 If a pattern set can be represented by a two-

layer Perceptron, …

 the Perceptron learning rule will always be

able to find some correct weights

http://theinfosphere.org/File:Perceptron.png

The Perceptron was a big hit

 Spawned the first wave in ‘connectionism’

 Great interest and optimism about the future

of neural networks

 First neural network hardware was built in

the late fifties and early sixties

Limitations of the Perceptron

 Only binary input-output values

 Only two layers

Only binary input-output values

 This was remedied in 1960 by Widrow and

Hoff

 The resulting rule was called the delta-rule

 It was first mainly applied by engineers

 This rule was much later shown to be

equivalent to the Rescorla-Wagner rule

(1976) that describes animal conditioning

very well

Only two layers

 Minsky and Papert (1969) showed that a

two-layer Perceptron cannot represent

certain logical functions

 Some of these are very fundamental, in

particular the exclusive or (XOR)

 Do you want coffee XOR tea?

Exclusive OR (XOR)

0 1

1

0.1 0.4

In Out

0 1 1

1 0 1

1 1 0

0 0 0

An extra layer is necessary to

represent the XOR

 No solid training procedure existed in 1969

to accomplish this

 Thus commenced the search for the

third or hidden layer

Minsky and Papert book caused

the ‘first wave’ to die out
 GOOFAI was increasing in popularity

 Neural networks were very much out

 A few hardy pioneers continued

 Within five years a variant was developed

by Paul Werbos that was immune to the

XOR problem, but few noticed this

 Even in Rosenblatt’s book many examples

of more sophisticated Perceptrons are given

that can learn the XOR

Error-backpropagation

 What was needed, was an algorithm to train
Perceptrons with more than two layers

 Preferably also one that used continuous
activations and non-linear activation rules

 Such an algorithm was developed by

– Paul Werbos in 1974

– David Parker in 1982

– LeCun in 1984

– Rumelhart, Hinton, and Williams in 1986

Error-backpropagation by

Rumelhart, Hinton, and Williams

Meet the hidden layer

The problem to be solved

 It is straightforward to adjust the weights to

the output layer, using the Perceptron rule

 But how can we adjust the weights to the

hidden layer?

The backprop trick

 To find the error value for a given node h in
a hidden layer, …

 Simply take the weighted sum of the errors
of all nodes connected from node h

 i.e., of all nodes that have an incoming
connection from node h:

1 2 3 n

w1
w2 w3 wn

h = w11 + w22 + w33 + … + wnn Node h

This is backpropgation of errors

To-nodes of h

Characteristics of backpropagation

 Any number of layers

 Only feedforward, no cycles (though a more
general versions does allow this)

 Use continuous nodes

– Must have differentiable activation rule

– Typically, logistic: S-shape between 0 and 1

 Initial weights are random

 Total error never increases (gradient descent
in error space)

The gradient descent makes sense

mathematically

 It does not guarantee high performance

 It does not prevent local minima

 The learning rule is more complicated and

tends to slow down learning unnecessary

when the logistic function is used

Logistic function

 S-shaped between 0 and 1

 Approaches a linear function around x = 0

 Its rate-of-change (derivative) for a node

with a given activation is:

 activation  (1 - activation)

Backpropagation algorithm in

rules

 weight change = some small constant 

error  input activation

 For an output node, the error is:

error = (target activation - output activation) 

output activation  (1 - output activation)

 For a hidden node, the error is:

error = weighted sum of to-node errors  hidden

activation  (1 - hidden activation)

Weight change and momentum

 backpropagation algorithm often takes a
long time to learn

 So, the learning rule is often augmented
with a so called momentum term

 This consist in adding a fraction of the old
weight change

 The learning rule then looks like:

weight change = some small constant  error 
input activation + momentum constant  old
weight change

Backpropagation in equations I

 If j is a node in an output layer, the error j

is:

j = (tj - aj) aj(1-aj)

 where aj is the activation of node j

 tj is its target activation value, and

 j its error value

Backpropagation in equations II

 If j is a node in a hidden layer, and if there

are k nodes 1, 2, …, k, that receive a

connection from j, the error j is:

 j = (w1j 1 + w2j 1 + … + wkjk) aj (1-aj)

 where the weights w1j , w2j , …, wkj belong

to the connections from hidden node j to

nodes 1, 2, …, k.

Backpropagation in equations III

 The backpropagation learning rule (applied
at time t) is:

wji(t) =  jai + wji(t-1)

 where wji (t) is the change in the weight
from node i to node j at time t,

 The learning constant  is typically chosen
rather small (e.g., 0.05).

 The momentum term  is typically chosen
around 0.5.

NetTalk: Backpropagation’s

‘killer-app’

 Text-to-speech converter

 Developed by Sejnowski and Rosenberg

(1986)

 Connectionism’s answer to DECTalk

 Learned to pronounce text with an error

score comparable to DECTalk

 Was trained, not programmed

 Input was letter-in-context, output phoneme

Despite its popularity backpropagation

has some disadvantages

 Learning is slow

 New learning will rapidly overwrite old

representations, unless these are interleaved

(i.e., repeated) with the new patterns

 This makes it hard to keep networks up-to-

date with new information (e.g., dollar rate)

 This also makes it very implausible from as

a psychological model of human memory

Good points

 Easy to use

– Few parameters to set

– Algorithm is easy to implement

 Can be applied to a wide range of data

 Is very popular

 Has contributed greatly to the ‘new

connectionism’ (second wave)

Conclusion

 Error-correcting learning has been very

important in the brief history of

connectionism

 Despite its limited plausibility as a

psychological model of learning and

memory, it is nevertheless used widely (also

in psychology)

